首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both water and nutrients are limiting in arid environments, and desert plants have adapted to these limitations through numerous developmental and physiological mechanisms. In the Mono Basin, California, USA, co-dominant Sarcobatus vermiculatus and Chrysothamnus nauseosus ssp. consimilis are differentially N and P limited. We hypothesized that low leaf N resorption contributes to N-limitation in Sarcobatus and that low leaf P resorption contributes to P-limitation in Chrysothamnus. As predicted, Sarcobatus resorbed proportionally 1.7-fold less N than Chrysothamnus, but reduced leaf P in senescent leaves to lower levels than Chrysothamnus (8.0–10.8-fold lower based on leaf area or mass, respectively), consistent with N, but not P limitations in Sarcobatus. Again, as predicted, Chrysothamnus resorbed proportionally 2.0-fold less P than Sarcobatus yet reduced leaf N in senescent leaves to lower levels than Sarcobatus (1.8–1.3-fold lower based on leaf area or mass, respectively), consistent with P, but not N limitations in Chrysothamnus. Leaf N and P pools were approximately 50% of aboveground pools in both species during the growing season, suggesting leaf resorption can contribute significantly to whole plant nutrient retention. This was consistent with changes in leaf N vs. P concentration as plants grew from seedlings to adults. Our results support the conclusion that N-limitation in Sarcobatus and P-limitation in Chrysothamnus are in part caused by physiological (or other) constraints that prevent more efficient resorption of N or P, respectively. For these species, differential nutrient resorption may be a key physiological component contributing to their coexistence in this saline, low resource habitat.  相似文献   

2.
We tested expectations that two desert shrubs would differ in germination and seedling relative growth rate (RGR) responses to Na and Ψs stress. The study species, Chrysothamnus nauseosus ssp. consimilis and Sarcobatus vermiculatus (hereafter referred to by genus), differ in their distribution along salinity gradients, with Chrysothamnus inhabiting only less saline areas. In growth chamber studies, declining Ψs (−0.82 to −2.71 MPa) inhibited germination of both species, and Chrysothamnus was less tolerant of Ψs stress than Sarcobatus. Germination fell below 10% for Chrysothamnus at −1.64 MPa (NaCl and PEG), and for Sarcobatus at −2.4 MPa PEG. Neither species exhibited ion toxicity. There was substantial ion enhancement for Sarcobatus in lower Ψs, allowing for 40% germination in −2.71 MPa NaCl. For seedling RGR, species were not different at −0.29 or −0.82 MPa (0 and 100 mmol/L NaCl, respectively), but Chrysothamnus RGR declined substantially at −1.3 MPa (200 mmol/L NaCl). The greater stress tolerance of Sarcobatus was not associated with a lower RGR under nonsaline conditions. Species differences in seed and seedling Ψs stress tolerance probably contribute to the restricted distribution of Chrysothamnus to less saline areas. The Na uptake of Sarcobatus seedlings enhances its ability to deal with declining Ψs and establish in more saline areas.  相似文献   

3.
In meiosis, chromosome cohesion is maintained by the cohesin complex, which is released in a two‐step manner. At meiosis I, the meiosis‐specific cohesin subunit Rec8 is cleaved by the protease Separase along chromosome arms, allowing homologous chromosome segregation. Next, in meiosis II, cleavage of the remaining centromere cohesin results in separation of the sister chromatids. In eukaryotes, protection of centromeric cohesion in meiosis I is mediated by SHUGOSHINs (SGOs). The Arabidopsis genome contains two SGO homologs. Here we demonstrate that Atsgo1 mutants show a premature loss of cohesion of sister chromatid centromeres at anaphase I and that AtSGO2 partially rescues this loss of cohesion. In addition to SGOs, we characterize PATRONUS which is specifically required for the maintenance of cohesion of sister chromatid centromeres in meiosis II. In contrast to the Atsgo1 Atsgo2 double mutant, patronus T‐DNA insertion mutants only display loss of sister chromatid cohesion after meiosis I, and additionally show disorganized spindles, resulting in defects in chromosome segregation in meiosis. This leads to reduced fertility and aneuploid offspring. Furthermore, we detect aneuploidy in sporophytic tissue, indicating a role for PATRONUS in chromosome segregation in somatic cells. Thus, ploidy stability is preserved in Arabidopsis by PATRONUS during both meiosis and mitosis.  相似文献   

4.
In meiosis, accumulation of recombination intermediates or defects in chromosome synapsis trigger checkpoint-mediated arrest in prophase I. Such 'checkpoints' are important surveillance mechanisms that ensure temporal dependence of cell cycle events. The budding yeast Polo-like kinase, Cdc5, has been identified as a key regulator of the meiosis I chromosome segregation pattern. Here we have analysed the role of Cdc5 in the recombination checkpoint and observed that Polo-like kinase is not required for checkpoint activation in yeast meiosis. Surprisingly, depletion of CDC5 in the Drad17 checkpoint-defective background resulted in nuclear fragmentation to levels even higher than that observed inDdmc1 Drad17 cells that bypass the checkpoint arrest despite accumulating DNA double-strand breaks. The spindle morphology of Cdc5-depleted cells included short, thick metaphase I spindles in mononucleate cells and disassembled spindles in binucleate and tetranucleate cells, although this phenotype does not appear to be the cause of the nuclear fragmentation. An exaggeration of chromosome synapsis defects occurred in Cdc5-depleted Drad17 cells and may contribute to the nuclear fragmentation phenotype. The analysis also uncovered a role for Cdc5 in maintaining spindle integrity in Ddmc1 Drad17 cells. Further analysis confirmed that adaptation to DNA damage does occur in meiosis and that CDC5 is required for this process. The cdc5-ad mutation that renders cells unable to adapt to DNA damage in mitosis did not affect checkpoint adaptation in meiosis, indicating that the mechanisms of checkpoint adaptation in mitosis and meiosis are not fully conserved.  相似文献   

5.
The spindle assembly checkpoint, SAC, is a surveillance mechanism to control the onset of anaphase during cell division. SAC prevents anaphase initiation until all chromosome pairs have achieved bipolar attachment and aligned at the metaphase plate of the spindle. In doing so, SAC is thought to be the key mechanism to prevent chromosome nondisjunction in mitosis and meiosis. We have recently demonstrated that Xenopus oocyte meiosis lacks SAC control. This prompted the question of whether Xenopus oocyte meiosis is particularly error-prone. In this study, we have karyotyped a total of 313 Xenopus eggs following in vitro oocyte maturation. We found no hyperploid egg, out of 204 metaphase II eggs with countable chromosome spreads. Therefore, chromosome nondisjunction is very rare during Xenopus oocyte meiosis I, despite the lack of SAC.  相似文献   

6.
温度对斯托克通氏烟草雄配子体形成和发育的影响   总被引:1,自引:0,他引:1  
为探究低温对斯托克通氏烟草(Nicotiana stocktonii)花粉母细胞(PMC)减数分裂及其雄配子体发育过程的影响,采用卡宝品红染色法,研究不同温度条件下该材料雄配子体形成和发育的过程。结果表明:种植于昼温(31±0.5)℃、夜温(11±0.5)℃人工气候箱中的Nicotiana stocktonii花粉母细胞减数分裂过程异常现象较少,出现微核的比率较低,用新鲜成熟的花粉做萌发实验花粉萌发率较高,为(71±3)%; 而种植于昼温(25±0.5)℃、夜温(3±0.5)℃条件下的Nicotiana stocktonii开花后花药大多干瘪,用新鲜成熟花粉做萌发实验花粉萌发率低,为(13.67±3)%,花粉母细胞减数分裂过程出现染色体桥、染色体不同步、染色体断片、落后染色体等现象,存在微核的细胞比率较高。因此,Nicotiana stocktonii花粉母细胞减数分裂与小孢子发育过程易受温度影响,从而影响花粉的可育性。  相似文献   

7.
8.
Although the role of cyclins in controlling nuclear division is well established, their function in ciliate meiosis remains unknown. In ciliates, the cyclin family has undergone massive expansion which suggests that diverse cell cycle systems exist, and this warrants further investigation. A screen for cyclins in the model ciliate Tetrahymena thermophila showed that there are 34 cyclins in this organism. Only 1 cyclin, Cyc17, contains the complete cyclin core and is specifically expressed during meiosis. Deletion of CYC17 led to meiotic arrest at the diakinesis-like metaphase I stage. Expression of genes involved in DNA metabolism and chromosome organization (chromatin remodeling and basic chromosomal structure) was repressed in cyc17 knockout matings. Further investigation suggested that Cyc17 is involved in regulating spindle pole attachment, and is thus essential for chromosome segregation at meiosis. These findings suggest a simple model in which chromosome segregation is influenced by Cyc17.  相似文献   

9.
We describe the cloning and characterization of a new gene family of adenylyl cyclase related genes in Drosophila. The five adenylyl cyclase-like genes that define this family are clearly distinct from previously known adenylyl cyclases. One member forms a unique locus on chromosome 3 whereas the other four members form a tightly clustered, tandemly repeated array on chromosome 2. The genes on chromosome 2 are transcribed in the male germline in a doublesex dependent manner and are expressed in postmitotic, meiotic, and early differentiating sperm. These genes therefore provide the first evidence for a role for the cAMP signaling pathway in Drosophila spermatogenesis. Expression from this locus is under the control of the always early, cannonball, meiosis arrest, and spermatocyte arrest genes that are required for the G2/M transition of meiosis I during spermatogenesis, implying a mechanism for the coordination of differentiation and proliferation. Evidence is also provided for positive selection at the locus on chromosome 2 which suggests this gene family is actively evolving and may play a novel role in spermatogenesis. Received: 26 September 1999 / Accepted: 27 October 1999  相似文献   

10.
Two diploid taxa, Grindelia procera and G. camporum, and 3 tetraploid ones, G. camporum, G. hirsutula, and G. stricta, have been studied to ascertain their interrelationships. Meiosis in diploid parental strains was regular, the common chromosome configuration being 5 rod bivalents and 1 ring bivalent. The average chiasmata frequency per chromosome was 0.60. Pollen fertility was about 90% in all strains examined. Diploid interspecific hybrids had normal meiosis with an average chiasmata frequency of 0.56 per chromosome. No heterozygosity for inversions or interchanges was detected, and pollen fertility was above 85%. Meiosis in parental tetraploid strains was characterized by the presence of quadrivalents in addition to a complementary number of bivalents. The average chiasmata frequency per chromosome was 0.59 and pollen fertility was generally about 80%. Tetraploid interspecific hybrids also had quadrivalents, normal meiosis, and high pollen fertility. Close genetic relationships between the diploids and between the tetraploids are indicated, and geographical, ecological, and seasonal barriers to gene exchange exist. Attempts to obtain hybrids between diploids and tetraploids were successful in a few cases. The hybrids were tetraploid and had normal meiosis and fertility similar to parental and F1 tetraploids. Their origin was by the union of unreduced gametes of the diploid female parent and normal pollen from the tetraploid parent. On the basis of chromosome homology, normal meiosis, plus high fertility exhibited in the diploid, tetraploid, and diploid X tetraploid interspecific hybrids, these species of Grindelia are considered to be a part of an autopolyploid complex. Gene exchange between diploids and diploids, tetraploids and tetraploids, and diploids and tetraploids is possible. Tetraploid G. camporum may have originated by hybridization between G. procera and diploid G. camporum with subsequent doubling of chromosomes and selection for the combined characteristics of the diploids.  相似文献   

11.
A. Hore 《Genetica》1981,56(3):205-211
Cytotypes within the genera Seseli L. and Oenanthe L. show variation in chromosome number in pollen mother cells. A correlation of low chiasma frequency with meiotic irregularities and pollen sterility was noted. In addition to the meiotic irregularities in the two genera occurrence of polyspory and triple pollen formation during meiosis have been observed in Seseli diffusum (Roxb.) Sant. Wagh. The presence of different chromosome numbers in different populations of the same species and karyological investigation in 4 species of Oenanthe L. suggests that structural changes of chromosomes associated with numerical differences have possibly played a role in their evolution. Diminution in chromosome size and complete absence of metacentric chromosomes in Oenanthe lachenalli Gmel. suggest that probably this species is more evolved than 3 species of Oenanthe (i.e., O. benghalensis Benth., O. pimpinelloides L. and O. thomsoni Clarke). The interrelationships of the two genera are discussed.  相似文献   

12.
To study meiosis, synchronous cultures are often indispensable, especially for physical analyses of DNA and proteins. A temperature-sensitive allele of the Pat1 protein kinase (pat1-114) has been widely used to induce synchronous meiosis in the fission yeast Schizosaccharomyces pombe, but pat1-114-induced meiosis differs from wild-type meiosis, and some of these abnormalities might be due to higher temperature needed to inactivate the Pat1 kinase. Here, we report an ATP analog-sensitive allele of Pat1 [Pat1(L95A), designated pat1-as2] that can be used to generate synchronous meiotic cultures at physiological temperature. In pat1-as2 meiosis, chromosomes segregate with higher fidelity, and spore viability is higher than in pat1-114 meiosis, although recombination is lower by a factor of 2–3 in these mutants than in starvation-induced pat1+ meiosis. Addition of the mat-Pc gene improved chromosome segregation and spore viability to nearly the level of starvation-induced meiosis. We conclude that pat1-as2 mat-Pc cells offer synchronous meiosis with most tested properties similar to those of wild-type meiosis.  相似文献   

13.
Chromosome banding in amphibia   总被引:4,自引:1,他引:3  
The distribution of constitutive heterochromatin on the chromosomes of Triturus a. alpestris, T. v. vulgaris and T. h. helveticus (Amphibia, Urodela) was investigated. Sex-specific chromosomes were determined in the karyotypes of T. a. alpestris (chromosomes 4) and T. v. vulgaris (chromosomes 5). The male animals have one heteromorphic chromosome pair, of which only one homologue displays heterochromatic telomeres in the long arms; the telomeres of the other homologue are euchromatic. This chromosome pair is always homomorphic and without telomeric heterochromatin in the female animals. There is a highly reduced crossing-over frequency between the heteromorphic chromosome arms in the male meiosis of T. a. alpestris; in T. v. vulgaris no crossing-over at all occurs between the heteromorphic chromosome arms. No heteromorphisms between the homologues exist on the corresponding lampbrush chromosomes of the female meiosis. In T. h. helveticus no sex-specific heteromorphism of the constitutive heterochromatin could be determined. The male animals of this species, however, already possess a chromosome pair with a greatly reduced frequency of chiasma-formation in the long arms. The C-band patterns and the pairing configurations of the sex-specific chromosomes in the male meiosis indicate an XX/XY-type of sex-determination for the three species. A revision of the literature about experimental interspecies hybridizations, gonadic structure of haploid and polyploid animals, and sex-linked genes yielded further evidence in favor of male heterogamety. The results moreover suggest that the heterochromatinization of the Y-chromosome was the primary step in the evolution of the sex chromosomes.  相似文献   

14.
Summary A cytological investigation of 15 different 56-chromosome Triticale and 16 Triticale with 42 chromosomes was carried out. 4 were primary Triticale and 12 were secondary Triticale. Chromosome pairing was not disturbed; 21 and 28 bivalents were found in the hexaploids and octoploids, respectively. Meiotic irregularities were established, however, in all the Triticale studied; in octoploids the frequency of the irregularities was 22–88% and in hexaploids it was 12–87%.In metaphase and anaphase asynchronous separation of chromosomes was noted. Incompatibility between wheat and rye genomes and the inactivation of single loci of rye chromosomes are suggested as the main causes of the irregularities in meiosis.Mitotic disturbances were found in all the amphidiploids. The frequency of anomalies in mitosis was considerably lower than in meiosis: in octoploids they made up 5%–11% and in hexaploids 6.2%–15.2%. In all the amphidiploids studied chimera plants were found containing pollen mother cells with different chromosome numbers. The chromosome number in the aneuploid cells varied from 8–48 in hexaploids and from 8–62 in octoploids. Octoploid Triticale had 29.4%–72.9% aneuploid pollen mother cells, while hexaploid Triticale had 5-2%–55-7%.  相似文献   

15.
Chromosome ends have been implicated in the meiotic processes of the nematode Caenorhabditis elegans. Cytological observations have shown that chromosome ends attach to the nuclear membrane and adopt kinetochore functions. In this organism, centromeric activity is highly regulated, switching from multiple spindle attachments all along the chromosome during mitotic division to a single attachment during meiosis. C. elegans chromosomes are functionally monocentric during meiosis. Earlier genetic studies demonstrated that the terminal regions of the chromosomes are not equivalent in their meiotic potentials. There are asymmetries in the abilities of the ends to recombine when duplicated or deleted. In addition, mutations in single genes have been identified that mimic the meiotic effects of a terminal truncation of the X chromosome. The recent cloning and characterization of the C. elegans telomeres has provided a starting point for the study of chromosomal elements mediating the meiotic process.  相似文献   

16.
Dr. A. J. Snope 《Chromosoma》1967,21(3):243-249
Abnormal chromosome 10 (K10) is known to increase recombination in maize and to induce preferential segregation in knobbed heterozygotes during megasporogenesis. In spite of the considerable interest generated by these findings, the origin of the K10 chromosome is unknown. It has been postulated that the extra segment of K10 arose by simple translocation between normal 10 and a B-chromosome. This hypothesis was tested by comparing meiosis in haploids with either K10 or the normal 10 and carrying a single B-chromosome. The frequency of bivalent configurations was found to be similar in the two types of haploids suggesting that the K10 and B-chromosomes do not share homologies that lead to chiasma formation. These results lend no support to the hypothesis that the K10 chromosome came from a B type. The implications of these results to the action of K10 at meiosis are also discussed.  相似文献   

17.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation after just single round of DNA replication. To identify novel proteins required for the proper segregation of chromosomes during meiosis, we analyzed the consequences of deleting Schizosaccharomyces pombe genes predicted to encode protein kinases that are not essential for cell viability. We show that Mph1, a member of the Mps1 family of spindle assembly checkpoint kinases, is required to prevent meiosis I homolog non-disjunction. We also provide evidence for a novel function of Spo4, the fission yeast ortholog of Dbf4-dependent Cdc7 kinase, in regulating the length of anaphase II spindles. In the absence of Spo4, abnormally elongated anaphase II spindles frequently overlap and thus destroy the linear order of nuclei in the ascus. Our observation that the spo4Δ mutant phenotype can be partially suppressed by inhibiting Cdc2-as suggests that dysregulation of the activity of this cyclin-dependent kinase may cause abnormal elongation of anaphase II spindles in spo4Δ mutant cells.  相似文献   

18.
At the onset of meiosis, chromosomes first decondense and then condense as the process of recognition and intimate pairing occurs between homologous chromosomes. We show here that okadaic acid, a drug known to induce chromosome condensation, can be introduced into wheat interspecific hybrids prior to meiosis to induce chromosome pairing. This pairing occurs in the presence of the Ph1 locus, which usually suppresses pairing of related chromosomes and which we show here delays condensation. Thus the timing of chromosome condensation during the onset of meiosis is an important factor in controlling chromosome pairing.  相似文献   

19.
The RecA homolog, RAD51, performs a central role in catalyzing the DNA strand exchange event of meiotic recombination. During meiosis, RAD51 complexes develop on pairing chromosomes and then most disappear upon synapsis. In the maize meiotic mutant desynaptic2 (dsy2), homologous chromosome pairing and recombination are reduced by ~70% in male meiosis. Fluorescent in situ hybridization studies demonstrate that a normal telomere bouquet develops but the pairing of a representative gene locus is still only 25%. Chromosome synapsis is aberrant as exemplified by unsynapsed regions of the chromosomes. In the mutant, we observed unusual RAD51 structures during chromosome pairing. Instead of spherical single and double RAD51 structures, we saw long thin filaments that extended along or around a single chromosome or stretched between two widely separated chromosomes. Mapping with simple sequence repeat (SSR) markers places the dsy2 gene to near the centromere on chromosome 5, therefore it is not an allele of rad51. Thus, the normal dsy2 gene product is required for both homologous chromosome synapsis and proper RAD51 filament behavior when chromosomes pair. Edited by: P. Moens  相似文献   

20.
A total of 40 introgression lines of common wheat (2 n = 42) Triticum aestivum L × T. timopheevii Zhuk., resistant to leaf rust and partly to powdery mildew, were examined. Based on cytological analysis of meiosis in pollen mother cells (PMC), hybrid lines were subdivided into two groups characterized by either stable or unstable meiosis. In cytologically stable lines, chromosome configuration at the MI stage of meiosis was mostly bivalent (21II) with small proportion of defect cells (almost 10%), which at most contained two univalents (20II + 2I). Cytologically unstable group was comprised of the lines, containing high proportions of cells with abnormal chromosome pairing in meiotic PMC, as well as the cells with multivalents, and the lines containing aneuploid plants. Localization of the T. timopheevii fragments performed with the use of SSR markers showed that the lines with unstable meiosis were characterized by higher numbers of introgressions compared to stable lines. The influence of certain chromosomes of T. timopheevii on chromosome pairing stability was also demonstrated. In cytologically unstable lines, the increased frequency of 2A substitutions along with the high frequency of introgression of T. timopheevii genetic material into chromosome 7A was observed. Multivalents were scored in all cases of introgression in chromosome 7A. It was suggested that the reason for the genome instability in hybrid forms lied in insufficient compensating ability of certain T. timopheevii chromosomes and/or their parts, involved into recombination processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号