首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The resistive pulse technique was used to study the influence of specific mechanical properties of the red cell on its ability to enter and flow through single capillary-sized pores with diameters of 3.6, 5.0 and 6.3 micron and lengths of 11 micron. A two-fold increase in membrane shear elasticity resulted in a 40 percent increase in the cell's transit time through a 3.6 micron pore but produced no change in transit time through a 6.3 micron pore. A two-fold increase in membrane shear viscosity produced a 40 percent increase in transit time through the 3.6 micron pore and small but significant increases in transit times through the larger pores. Osmotically dehydrated cells showed no increase in transit time through a 6.3 micron pore, but showed increases in transit times of 50 to 70 percent through 5.0 and 3.6 micron pores. Dense red cells showed increased transit times through both 5.0 micron and 6.0 micron pores. These results indicate that for cells with normal geometric properties, the membrane's shear viscosity and elasticity only influence the cell's transit through pores of 5 micron or less in diameter. However, alterations in the cell's geometric properties can extend the influence of membrane shear properties to larger diameter pores.  相似文献   

2.
Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules.  相似文献   

3.
Mediated transport across the nuclear envelope was investigated in proliferating and growth-arrested (confluent or serum starved) BALB/c 3T3 cells by analyzing the nuclear uptake of nucleoplasmin-coated colloidal gold after injection into the cytoplasm. Compared with proliferating cells the nuclear uptake of large gold particles (110-270 A in diameter, including the protein coat) decreased 5.5-, 33-, and 78- fold, respectively, in 10-, 14-17-, and 21-d-old confluent cultures; however, the relative uptake of small particles (total diameter 50-80 A) did not decrease with increasing age of the cells. This finding suggests that essentially all pores remain functional in confluent populations, but that most pores lose their capacity to transport large particles. By injecting intermediate-sized gold particles, the functional diameters of the transport channels in the downgraded pores were estimated to be approximately to 130 and 110 A, in 14-17- and 21-d- old cultures, respectively. In proliferating cells, the transport channels have a functional diameter of approximately 230 A. The mean diameters of the pores (membrane-to-membrane distance) in proliferating and confluent cells (728 and 712 A, respectively) were significantly different at the 10%, but not the 5%, level. No differences in pore density (pore per unit length of membrane) were detected. Serum- deprived cells (7-8 d in 1% serum or 4 d in 0.5% serum) also showed a significant decrease in the nuclear uptake of large, but not small, gold particles. Thus, the permeability effects are not simply a function of high cell density but appear to be growth related. The possible functional significance of these findings is discussed.  相似文献   

4.
Nuclear pores in cells of the yeast Saccharomyces cerevisiae were examined by using the freeze-fracture technique. Nuclear pore diameters in actively growing cells appear to be exclusively of the normal diameter (75 to 115 nm), whereas some pore diameters in abnormally small G1-arrested cells produced by nitrogen starvation are unusually wide (120 to 160 nm). There may be a correlation between nuclear pore size and nuclear envelope size, the larger pores tending to occur in the smaller envelopes. The finding suggests that nuclear pore diameter may not function in regulating the flow of informational molecules from nucleus to cytoplasm, but may be implicated in regulating the flow of substrates into the nucleus.  相似文献   

5.
Peter C  Hummer G 《Biophysical journal》2005,89(4):2222-2234
Narrow hydrophobic regions are a common feature of biological channels, with possible roles in ion-channel gating. We study the principles that govern ion transport through narrow hydrophobic membrane pores by molecular dynamics simulation of model membranes formed of hexagonally packed carbon nanotubes. We focus on the factors that determine the energetics of ion translocation through such nonpolar nanopores and compare the resulting free-energy barriers for pores with different diameters corresponding to the gating regions in closed and open forms of potassium channels. Our model system also allows us to compare the results from molecular dynamics simulations directly to continuum electrostatics calculations. Both simulations and continuum calculations show that subnanometer wide pores pose a huge free-energy barrier for ions, but a small increase in the pore diameter to approximately 1 nm nearly eliminates that barrier. We also find that in those wider channels the ion mobility is comparable to that in the bulk phase. By calculating local electrostatic potentials, we show that the long range Coulomb interactions of ions are strongly screened in the wide water-filled channels. Whereas continuum calculations capture the overall energetics reasonably well, the local water structure, which is not accounted for in this model, leads to interesting effects such as the preference of hydrated ions to move along the pore wall rather than through the center of the pore.  相似文献   

6.
We present experimental and theoretical results of electroporation of small patches of planar lipid bilayers by means of linearly rising current. The experiments were conducted on ~120-μm-diameter patches of planar phospholipid bilayers. The steadily increasing voltage across the bilayer imposed by linearly increasing current led to electroporation of the membrane for voltages above a few hundred millivolts. This method shows new molecular mechanisms of electroporation. We recorded small voltage drops preceding the breakdown of the bilayer due to irreversible electroporation. These voltage drops were often followed by a voltage re-rise within a fraction of a second. Modeling the observed phenomenon by equivalent electric circuits showed that these events relate to opening and closing of conducting pores through the bilayer. Molecular dynamics simulations performed under similar conditions indicate that each event is likely to correspond to the opening and closing of a single pore of about 5 nm in diameter, the conductance of which ranges in the 100-nS scale. This combined experimental and theoretical investigation provides a better quantitative characterization of the size, conductance and lifetime of pores created during lipid bilayer electroporation. Such a molecular insight should enable better control and tuning of electroporation parameters for a wide range of biomedical and biotechnological applications.  相似文献   

7.
Pit membranes between xylem vessels have been suggested to have functional adaptive traits because of their influence on hydraulic resistance and vulnerability to embolism in plants. Observations of intervessel pit membranes in 26 hardwood species using electron microscopy showed significant variation in their structure, with a more than 25-fold difference in thickness (70-1892 nm) and observed maximum pore diameter (10-225 nm). In some SEM images, pit membrane porosity was affected by sample preparation, although pores were resolvable in intact pit membranes of many species. A significant relationship (r(2) = 0.7, P = 0.002) was found between pit membrane thickness and maximum pore diameter, indicating that the thinner membranes are usually more porous. In a subset of nine species, maximum pore diameter determined from SEM was correlated with pore diameter calculated from air-seeding thresholds (r(2) = 0.8, P < 0.001). Our data suggest that SEM images of intact pit membranes underestimate the porosity of pit membranes in situ. Pit membrane porosity based on SEM offers a relative estimate of air-seeding thresholds, but absolute pore diameters must be treated with caution. The implications of variation in pit membrane thickness and porosity to plant function are discussed.  相似文献   

8.
Reconstitution experiments were performed on lipid bilayer membranes in the presence of purified mitochondrial porin from yeast and of detergent-solubilized mitochondrial outer membranes of a porin-free yeast mutant. The addition of the porin resulted in a strong increase of the membrane conductance, which was caused by the formation of ion-permeable channels in the membranes. Yeast porin has a single-channel conductance of 4.2 nS in 1 M KCl. In the open state it behaves as a general diffusion pore with an effective diameter of 1.7 nm and possesses properties similar to other mitochondrial porins. Surprisingly, the membrane conductance also increased in the presence of detergent extracts of the mitochondrial outer membrane of the mutant. Single-channel recordings of lipid bilayer membranes in the presence of small concentration of the mutant membranes suggested that this membrane also contained a pore. The reconstituted pores had a single-channel conductance of 2.0 nS in 1 M KCl and the characteristics of general diffusion pores with an estimated effective diameter of 1.2 nm. This means that the pores present in the mitochondrial outer membranes of the yeast mutant have a much smaller effective diameter than normal mitochondrial porins. Zero-current membrane potential measurements suggested that the second mitochondrial porin is slightly cation-selective, while yeast porin is slightly anion-selective in the open state but highly cation-selective in the closed state. The possible role of these pores in the metabolism of mitochondria is discussed.  相似文献   

9.
Determination of the rates of saccharide diffusions by the proteoliposomes showed that the outer membrane of Pseudomonas aeruginosa only possesses small diffusion pores and that protein F might have not been involved in the pore formation. Proteoliposomes containing stachyose or Dextan T-10 showed the same relative diffusion rates as measured by the liposome swelling method. Slopes of the lines, diffusion rate vs saccharide Mr, in the liposomes made of the P. aeruginosa and E. coli B outer membranes appeared to be -7.4 and -3.5, respectively. Intercepts of the lines with x-axis in the liposomes containing the P. aeruginosa and E. coli B outer membrane appeared to be about Mr, 220 and 320, respectively. Relative diffusion rates of saccharides through the liposome membranes reconstituted from the protein F-deficient outer membrane were superimposable with that of the protein F-sufficient outer membrane.  相似文献   

10.
Summary Rapid-freezing/freeze-fracture electron microscopy and whole-cell capacitance techniques were used to study degranulation in peritoneal mast cells of the rat and the mutant beige mouse. These studies allowed us to create a time-resolved picture for fusion pore formation. After stimulation, a dimple in the plasma membrane formed a small contact area with the secretory granule membrane. Within this zone of apposition no ordered proteinaceous specializations were seen. Electrophysiological technique measured a small fusion pore which widened rapidly to 1 nS. Thereafter, the fusion pore remained at semi-stable conductances between 1 and 20 nS for a wide range of times, between 10 and 15,000 msec. These conductances correspond to pore diameters 25–36 nm. Ultrastructural data confirmed small pores of hourglass morphology, composed of biological membrane coplanar with both the plasma and granular membranes. Later, the fusion pore rapidly increased in conductance, consistent with the observed morphology of omega-figures. The hallmarks of channel-like behavior, instantaneous jumps in pore conductance between defined levels, and sharp peaks in histograms of conductance dwell-time, were not seen. Since the morphology of small pores shows contiguous fracture planes, the electrical data represent pores that contain lipid. These combined morphological and electrophysiological data are consistent with a lipid/protein complex mediating both the initial and later stages of membrane fusion.We would like to dedicate this paper to the memory of our friend and mentor, Alex Mauro, who emphasized to us the importance of equivalent circuits. This work was supported by National Institutes of Health grant GM-27367, and National Science Foundation grant IBN-91117509.  相似文献   

11.
The pit membrane in bordered pits of conifer tracheids is characterized by a porous margo and central thickening (torus), which is traditionally considered to function as an impermeable safety valve against air-seeding. However, electron microscopy based on 33 conifer species, including five families and 19 genera, reveals that pores occur in the torus of 13 of the species studied. The pores have a plasmodesmatal origin with an average diameter of 51 nm and grouped arrangement. Evidence for embolism spreading via pores in tori is supported by the pore sizes, which correspond relatively well with the pressure inducing cavitation. Predictions based on earlier correlations between pit structure and cavitation resistance were only weakly supported for species with punctured tori. Moreover, species with punctured tori are significantly less resistant to cavitation than species with non-punctured tori. Nevertheless, absolute pore diameters must be treated with caution and correlations between theoretical and measured air-seeding pressures are weak. Because most pores appear not to traverse the torus but are limited to one torus pad, only complete pores would trigger air-seeding. Embolism spreading through a leaky torus is not universal across gymnosperms and unlikely to represent the only air-seeding mechanism.  相似文献   

12.
This paper presents the application of chronopotentiometry in the study of membrane electroporation. Chronopotentiometry with a programmable current intensity was used. The experiments were performed on planar bilayer phosphatidylcholine and cholesterol membranes formed by the Mueller-Rudin method. It was demonstrated that a constant-intensity current flow through the bilayer membranes generated voltage fluctuations during electroporation. These fluctuations (following an increase and decrease in membrane conductance) were interpreted as a result of the opening and closing of pores in membrane structures. The decrease in membrane potential to zero did not cause the pore to close immediately. The pore was maintained for about 200 s. The closing of the pore and recovery of the continuous structure of the membrane proceeded not only when the membrane potential equalled zero, but also at membrane potentials up to several tens of millivolts. The fluctuations of the pore were possible at values of membrane potential in the order of at least 100 mV. The size of the pore changed slightly and it closed after some time below this potential value.  相似文献   

13.
This paper presents the application of chronopotentiometry in the study of membrane electroporation. Chronopotentiometry with a programmable current intensity was used. The experiments were performed on planar bilayer phosphatidylcholine and cholesterol membranes formed by the Mueller-Rudin method. It was demonstrated that a constant-intensity current flow through the bilayer membranes generated voltage fluctuations during electroporation. These fluctuations (following an increase and decrease in membrane conductance) were interpreted as a result of the opening and closing of pores in membrane structures. The decrease in membrane potential to zero did not cause the pore to close immediately. The pore was maintained for about 200 s. The closing of the pore and recovery of the continuous structure of the membrane proceeded not only when the membrane potential equalled zero, but also at membrane potentials up to several tens of millivolts. The fluctuations of the pore were possible at values of membrane potential in the order of at least 100 mV. The size of the pore changed slightly and it closed after some time below this potential value.  相似文献   

14.
Electrical properties of the plasma membrane of guard cell protoplasts isolated from stomates of Vicia faba leaves were studied by application of the whole-cell configuration of the patch-clamp technique. The two types of K+ currents that have recently been identified in guard cells may allow efflux of K+ during stomatal closing, and uptake of K+ during stomatal opening (Schroeder et al., 1987). A detailed characterization of ion transport properties of the inward-rectifying (IK+,in) and the outward-rectifying (IK+,out) K+ conductance is presented here. The permeability ratios of IK+,in and IK+,out currents for K+ over monovalent alkali metal ions were determined. The resulting permeability sequences (PK+ greater than PRb+ greater than PNa+ greater than PLi+ much greater than PCs+) corresponded closely to the ion specificity of guard cell movements in V. faba. Neither K+ currents exhibited significant inactivation when K+ channels were activated for prolonged periods (greater than 10 min). The absence of inactivation may permit long durations of K+ fluxes, which occur during guard cell movements. Activation potentials of inward K+ currents were not shifted when external K+ concentrations were changed. This differs strongly from the behavior of inward-rectifying K+ channels in animal tissue. Blue light and fusicoccin induce hyperpolarization by stimulation of an electrogenic pump. From slow-whole-cell recordings it was concluded that electrogenic pumps require cytoplasmic substrates for full activation and that the magnitude of the pump current is sufficient to drive K+ uptake through IK+,in channels. First, direct evidence was gained for the hypothesis that IK+,in channels are a molecular pathway for K+ accumulation by the finding that IK+,in was blocked by Al3+ ions, which are known to inhibit stomatal opening but not closing. The results presented in this study strongly support a prominent role for IK+,in and IK+,out channels in K+ transport across the plasma membrane of guard cells.  相似文献   

15.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

16.
Molecular simulations were used to examine the adsorption of diatomic molecules (nitrogen and oxygen) and similarly sized gases (argon and methane) in pores with van der Waals diameters similar in size to the gas diameters. Idealised carbon nanotubes were used to model generic pores, to better understand the effect of pore diameter on guest adsorption in the absence of defects, specific adsorption sites, or variations in pore diameter that often complicate studies of gas adsorption in other porous materials. Molecular dynamics simulations of open nanotubes show that argon and methane are able to enter tubes whose diameters are slightly smaller than the gas diameters. Diatomic gases are able to enter tubes that are significantly smaller than their kinetic diameters with the molecular axis aligned parallel to the nanotube. The results indicate that size-selective adsorption of these gases is theoretically possible, although differences in pore diameters of only a few tenths of an Angstrom are required. Grand canonical Monte Carlo simulations of a 3.38 Å nanotube indicate significant uptake by argon and oxygen, but not nitrogen or methane. The adsorption of nitrogen and methane gradually increases as the nanotube diameter approaches 4.07 Å, and all gases fully saturate a 4.54 Å nanotube. Of the nanotubes studied, the largest adsorption enthalpy for any gas corresponds to the 4.54 Å nanotube, with significantly lower enthalpies seen in the 5.07 Å nanotube. These results suggest an ideal pore diameter for each gas based on the gas–pore van der Waals interaction energies. Trends in the ideal diameter correlate with the minimum tube diameter accessible to each gas.  相似文献   

17.
Superporous agarose beads contain both normal diffusion pores and special, very wide superpores through which part of the chromatographic flow is transported, a situation that may greatly improve the chromatographic performance. For the first time such pore flow was measured directly by following the movement of microparticles (dyed yeast cells) through superporous beads packed in a chromatographic bed. The passage of the microparticles through the superpores and through the interstitial pores was recorded by a microscope/video camera. The video recordings were subsequently used to determine flow paths as well as the convective fluid velocities in both the superpores and the interstitial pores. The superpore fluid velocity was found to be proportional to the ratio between the squares of the respective pore diameters, which is in agreement with the Kozeny-Carman equation. Values for two-dimensional and three-dimensional tortuosity of the flow paths were measured and calculated respectively.  相似文献   

18.
The relationship between the dimensions of a microbe and the accumulation of that microbe in porous, inorganic structures has been determined. That relationship is dependent upon the cell dimensions, the mode of reproduction, and the pore diameter of the material. In order to achieve high accumulation of microbes that reproduce by fission, at least 70% of the pores of an inorganic carrier should have pore diameters in the range of one times the smallest major dimension through five times the largest major dimension of the cell. To achieve the highest accumulation of microbes that reproduce by budding, at least 70% of the pores should have pore diameters in the range of one times the smallest dimension of the cell and less than four times the largest cell dimension. These relationships were established by varying the physical parameters of the carriers as well as their chemical composition.  相似文献   

19.
We present a straightforward, accessible method for the fabrication of micropores with diameters from 2 to 800 micro m in films of amorphous Teflon (Teflon AF). Pores with diameters 相似文献   

20.
Biocompatible, highly interconnected microporous poly(L-lactic acid) (PLLA) foams or scaffolds with nano-fibrous structure, containing pores with diameters of 0.1-3.5 μm and fibers with diameters of 300-700 nm scale, were prepared through the thermally induced liquid-liquid phase separation (TIPS) method using N,N'-dimethyl acetamide (DMAc) as solvent. Various foam morphologies were obtained by changing parameters involved in the TIPS process, such as polymer concentration, solvent composition, and quenching temperatures. The morphology of different foams was examined by scanning electron microscopy, whereas the pore size and the pore size distribution were calculated. The results showed that most porous foams presented nano-fibrous structure with interconnected open pores. In the case of using DMAc as solvent, with increasing polymer concentration, either the average pore diameter or the pore size distribution exhibited a maximum value at 0.05 g/mL polymer concentration and quenching temperature of -30°C. It was found that all the pore size distribution fit the F-distribution equation. With increasing the quenching temperature from -30°C to -10°C, the maximum average pore diameter of the foams decreased and the pore size distribution became narrower, whereas the polymer concentration exhibiting the maximum pore size and widest pore size distribution increased from 0.05 g/mL to 0.07 g/mL. In the case of using the mixed solvent of DMAc/DOX (1,4-dioxane) from 9/1 to 7/3 (v/v) there appeared a maximum value of average pore diameter and a widest pore size distribution all at 0.05 g/mL PLLA concentration and quenching temperature of -30°C. The maximum pore size tends to increase with increasing DOX content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号