首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural and synthesized hybrids of Ceratopteris were investigated to determine the effect of hybridization on the genetic system. Studies indicated that the hybrids exhibited massive spore abortion and pairing abnormalities at meiotic prophase, characteristic of “sterile diploids and triploids” reported in hybridization studies of other fern genera. However, a small percentage of viable spores also was produced by the hybrids. Cytological investigations indicated the presence of previously unreported meiotic adaptations that allowed the production of unreduced spores and reduced spores exhibiting chromatid heterozygosity. The reduced spores allow haploid gametophytes to form heterozygous zygotes in spite of intragametophytic selfing. The unreduced spores were shown to be responsible for the fertility of the “sterile” hybrid and allowed the subsequent production of up to three generations of sporophytes. The literature suggests that these meiotic adaptations are present in other fern genera and may play a significant role in evolution through hybridization.  相似文献   

2.
Organic–inorganic hybrid perovskite solar cells with mixed cations and mixed halides have achieved impressive power conversion efficiency of up to 22.1%. Phase segregation due to the mixed compositions has attracted wide concerns, and their nature and origin are still unclear. Some very useful analytical techniques are controversial in microstructural and chemical analyses due to electron beam‐induced damage to the “soft” hybrid perovskite materials. In this study photoluminescence, cathodoluminescence, and transmission electron microscopy are used to study charge carrier recombination and retrieve crystallographic and compositional information for all‐inorganic CsPbIBr2 films on the nanoscale. It is found that under light and electron beam illumination, “iodide‐rich” CsPbI(1+x )Br(2?x ) phases form at grain boundaries as well as segregate as clusters inside the film. Phase segregation generates a high density of mobile ions moving along grain boundaries as ion migration “highways.” Finally, these mobile ions can pile up at the perovskite/TiO2 interface resulting in formation of larger injection barriers, hampering electron extraction and leading to strong current density–voltage hysteresis in the polycrystalline perovskite solar cells. This explains why the planar CsPbIBr2 solar cells exhibit significant hysteresis in efficiency measurements, showing an efficiency of up to 8.02% in the reverse scan and a reduced efficiency of 4.02% in the forward scan, and giving a stabilized efficiency of 6.07%.  相似文献   

3.
Diverse temperate forest types and a high atmospheric humidity have recently been suggested for the Eocene source area of Baltic amber. However, ferns are astonishingly rare as inclusions in this amber, which is in contrast to other seed‐free land plants, fungi, and lichens. Moreover, the identities of some of the few described putative fern taxa are dubious, and some fossils were even assigned to the Paleozoic seed fern genera Alethopteris, Pecopteris and to the form genus Sphenopteris containing Paleozoic and Mesozoic fern‐like leaf fossils. Here, we review previously described fern inclusions from Baltic amber and identify further fern‐like leaf inclusions as belonging to the extant angiosperm genus Comptonia (sweet ferns, Myricaceae). We conclude that only one taxon, Matonia striata (Matoniaceae), can with confidence be identified as a Polypodiopsida representative. Although “Pecopterishumboldtiana is so far only known as sterile foliage, its leaf morphology strongly suggests that also this taxon belongs to the Polypodiopsida rather than to any other tracheophyte lineage. We propose accommodating “Pecopterishumboldtiana in the new genus Berendtiopteris. “Alethopterisserrata and “Sphenopteris” phyllocladoides are not to be regarded as evidence of ferns from Baltic amber. Reinvestigation of the holotypes of these two taxa did not reveal to which tracheophyte lineages these fossils belong. We suggest that the scarcity of fern remains from Baltic amber may reflect both a relatively low fern diversity in the source area of the fossil resin, and an absence or rarity of epiphytic and climbing ferns as observed in modern temperate forest ecosystems.  相似文献   

4.
Light-harvesting complex 2 (LH2) from the semi-aerobically grown purple phototrophic bacterium Rhodobacter sphaeroides was studied using optical (static and time-resolved) and resonance Raman spectroscopies. This antenna complex comprises bacteriochlorophyll (BChl) a and the carotenoid spheroidenone, a ketolated derivative of spheroidene. The results indicate that the spheroidenone-LH2 complex contains two spectral forms of the carotenoid: (1) a minor, “blue” form with an S2 (11B u + ) spectral origin band at 522 nm, shifted from the position in organic media simply by the high polarizability of the binding site, and (2) the major, “red” form with the origin band at 562 nm that is associated with a pool of pigments that more strongly interact with protein residues, most likely via hydrogen bonding. Application of targeted modeling of excited-state decay pathways after carotenoid excitation suggests that the high (92%) carotenoid-to-BChl energy transfer efficiency in this LH2 system, relative to LH2 complexes binding carotenoids with comparable double-bond conjugation lengths, derives mainly from resonance energy transfer from spheroidenone S2 (11B u + ) state to BChl a via the Qx state of the latter, accounting for 60% of the total transfer. The elevated S2 (11B u + ) → Qx transfer efficiency is apparently associated with substantially decreased energy gap (increased spectral overlap) between the virtual S2 (11B u + ) → S0 (11A g ? ) carotenoid emission and Qx absorption of BChl a. This reduced energetic gap is the ultimate consequence of strong carotenoid–protein interactions, including the inferred hydrogen bonding.  相似文献   

5.
Cytogenetic investigation of microsporogenesis in Agropyron sericeum, Hordeum jubatum, their spontaneous hybrid, Agrohordeum pilosilemma, its amphiploid, and the backcross of the amphiploid to A. sericeum, B1, elucidated the genome relationships of A. sericeum and H. jubatum. The tetraploid parental species share a partially homologous genome which affects the pairing relationships evidenced in their hybrids. The genome formulae assigned to these plants are: A. sericeum, A“A”BB; H. jubatum, AAA'A‘; Agrohordeum pilosilemma, AA'A“B; the amphiploid, AAA'A‘A”A“BB; and B1, AA'A”A“BB. Observed pairing configurations were compatible with the expected maximum pairing configurations predicted under the assumption of genetic control of pairing with dosage effects. This is interpreted as further support for the hypothesis that pairing in the hybrids of H. jubatum is controlled by the A genome, one dose of A allowing homeologous pairing and two doses of A promoting homeologous association.  相似文献   

6.
Allopolyploid speciation is well documented in the ferns, but data from enzyme electrophoresis have only recently shown that certain sexual and agamosporous taxa are autopolyploids. Autopolyploidy may arise through fertilization involving gametophytes from unreduced spores, a mechanism previously proposed to account for the origin of allopolyploid Asplenium plenum. This report assesses the ability of unreduced spores to function in the origin of polyploid fern species by using enzyme electrophoresis to test their hypothesized role in the origin of A. plenum. Six isozymes of the enzymes PGI, PGM, TPI, 6PGD, and LAP are species-specific for the taxa proposed as parental under two competing hypotheses for the origin of this species. Electrophoretic data reject the more conventional hypothesis involving simple hybridization and agree perfectly with expectations under the more complex hypothesized origin via unreduced spores. The mechanism whereby unreduced spores have functioned in this case is no different from that by which they would function in the origin of autopolyploid taxa and may be more common in the origin of fern species than previously suspected.  相似文献   

7.
Endogenous protein phosphorylation, DNase and RNase electrophoretic patterns, and the detection of NDP-kinases by TLC (Thin Layer Chromatography) were performed in Thinopyrum ponticum (2n=10x=70), Triticum aestivum (2n=6x=42), and their hybrid seedlings in order to accomplish intergeneric hybridization. Octoploid intergeneric hybrids (2n=8x=56) were synthesized in less than 50% of the hybrids. The F1 hybrid plants resembled Th. ponticum with regard to morphological features and were sterile. Hybrid seedlings revealed very low endogenous phosphorylation and very low NDP-kinase activity in comparison to their parents. In addition hybrid seedlings expressed a new nuclease. Received: 29 June 2000 / Accepted: 28 July 2000  相似文献   

8.
A knowledge of fern phenology promotes understanding of the biology and ecology of ferns. In this study, the phenology of 16 fern species in a subtropical broadleaf forest (N24°46′, E121°34′) in northeastern Taiwan was monitored from August 1997 to August 2001. Every fern produced both fertile and sterile leaves in each year of the study. Most fertile leaves emerged in February and March, whereas most sterile leaves emerged from May to September. Most leaves reached full expansion during April–July and died during April–August. The average life span of leaves ranged from 4.4 months to 30.3 months. In seven species, fertile leaves lived longer than sterile leaves, but this difference was significant only in Pteris wallichiana. In the other nine species, sterile leaves lived longer than fertile leaves, but the difference was significant only in Cyathea spinulosa, Plagiogyria dunnii, and Plagiogyria adanata. The ephemeral fertile leaves of the two dimorphic species died soon after releasing their spores, at only 5 months of age. However, their sterile leaves survived for over 22 months. The fertile leaves of the other 14 species remained green for almost 2 years after releasing their spores. Sterile leaves remained sterile throughout their lives. Spores matured in May–July and were released in June–August. After spore release, the sporangia detached. No leaf produced a second cohort of sori. Several phenological events, including sterile leaf emergence, leaf expansion and senescence, and spore maturation and release, were significantly positively correlated with temperature but not with precipitation, whereas the emergence of fertile leaves was weakly negatively correlated with temperature and precipitation. However, those correlations varied among different species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The measurement of departure from randomness in spatial distributions has widespread application in ecological work. Several “indices of non-randomness” are compared with regard to their dependence on sample number, sample size and density. Criteria for the best choice of index for specific situations are discussed. A new coefficient Cx is proposed for use with positively contagious distributions and tests of significance are given. When Cx and another index (S2/m−1) are used for positive and negative contagion respectively, values ranging from −1 through 0 (random) to +1 are obtained, regardless of sample number, sample size or density.  相似文献   

10.
Ferns reproduce through small and usually haploid spores. The general paradigm states that whereas species produce good shaped spores, hybrids are sterile and form aborted spores. Apomictic fern species represent an unusual case, and it is believed that they produce an unbalanced spore spectrum. Until now, no comprehensive comparison of sexual and apomictic taxa using extensive spore fitness data has been published. Based on a representative data set of 109 plants from 23 fern taxa, we accomplished the first robust analysis of spore fitness using spore abortion index (SAI), the ratio of aborted to all examined spores. One thousand spores were analyzed for each plant. Focusing mainly on two major European fern taxa (Asplenium, Dryopteris), we compared this trait for different fern reproductive types (sexual/apomicts/hybrids) and ploidy levels (diploid versus polyploid). Our results confirmed the general assumption that shows higher SAI for apomictic taxa (18%) when compared to sexual taxa (3%). Furthermore, hybrids are characterized by having almost all spores aborted (99.8%) with the notable exception of pentaploid Dryopteris × critica (93.1%), the hybrid between sexual and apomictic taxa. We found no significant difference in SAI between sexual taxa of various ploidy levels or between sexual taxa of genera Dryopteris and Asplenium. Additionally, we carried out an optimization of the SAI method, outlying important guidelines for the use of this method in the future.  相似文献   

11.
Hybrids were produced with relative ease from controlled crosses of Elymus canadensis L. with European Agropyron caninum (L.) Beauv., North American A. trachycaulum (Link) Malte ex H. F. Lewis, and Asian A. striatum Nees ex Steud. All hybrids appeared to be completely sterile and were, for the most part, morphologically intermediate between their parents. The E. canadensis × A. caninum hybrids were exceptionally vigorous and leafy and may have some potential as forage grasses if fertility can be achieved. All parent plants were tetraploid, 2n = 28, and they behaved cytologically as alloploids. Chromosome pairing in the hybrids indicated that both E. canadensis genomes were closely homologous with those of A. trachycaulum and somewhat less homologous with those of A. caninum. Interchanged and inverted chromosome segments apparently constitute the major differences between E. canadensis, A. trachycaulum, and A. caninum genomes; however, cryptic structural differences must also exist. Partial homologies were detected between one A. striatum and E. canadensis genome, but their other genomes were distinctly different. The genome relations between the parent species were expressed in terms of the following genome formulas: E. canadensis, S1S1X1X1; A. trachycaulum, S2S2X2X2; A. caninum, S3S3X3X3 : and A. striatum S4S4YY or X4X4YY, where “S” refers to a genome derived from A. spicatum and “X” and “Y” are genomes of unknown origin.  相似文献   

12.
Phlox cuspidata (n = 7) and P. drummondii subsp. drummondii (n = 7) are closely related annuals which are indigenous to eastern and central Texas. The species typically occupy different ecological niches but may form contiguous or confluent populations in disturbed habitats and hybridize therein. On the basis of correlative interpretations of exomorphic, chromatographic and fertility information, hybridizing populations can be segregated into three distinct classes: (1) highly fertile plants with the morphological and phenolic attributes of P. drummondii; (2) highly fertile plants with the morphological and chemical attributes of P. cuspidata; (3) sterile plants with manifestly intermediate morphology and complementary chromatographic patterns. These data strongly suggest that hybridizing populations of P. drummondii and P. cuspidata are tritypic, being composed of “pure” or essentially “pure” parental species and a group of plants which has all of the attributes characteristic of an F1 hybrid.  相似文献   

13.
Rice is a major cereal crop for China. The development of the ‘‘three-line" hybrid rice system based on cytoplasmic male sterility in the 1970 s(first-generation) and the ‘‘two-line" hybrid rice system based on photoperiod-and thermo-sensitive genic male-sterile lines(second-generation)in the 1980 s has contributed significantly to rice yield increase and food security in China. Here we describe the development and implementation of the ‘‘third-generation" hybrid rice breeding system that is based on a transgenic approach to propagate and utilize stable recessive nuclear male sterile lines, and as such, the male sterile line and hybrid rice produced using such a system is nontransgenic. Such a system should overcome the intrinsic problems of the ‘‘first-generation" and‘‘second-generation" hybrid rice systems and hold great promise to further boost production of hybrid rice and other crops.  相似文献   

14.
Identification of fern gametophytes is generally hampered by low morphological complexity. Here we explore an alternative: DNA‐based identification. We obtained a plastid rbcL sequence from a sterile gametophyte of unknown origin (cultivated for more than 30 years) and employed blast to determine its affinities. Using this approach, we identified the gametophyte as Osmunda regalis. To evaluate the robustness of this determination, and the usefulness of rbcL in differentiating among species, we conducted a phylogenetic analysis of osmundaceous fern sequences. Based on our results, it is evident that DNA‐based identification has considerable potential in exploring the ecology of fern gametophytes.  相似文献   

15.
Length polymorphism in a non-coding spacer (trnLUAA-trnFGAA) in the chloroplast DNA was used in the investigation of the origin of the most common and conspicuous European fern hybrid, Asplenium x alternifolium (Aspleniaceae, Pteridophyta). The origins of A. x alternifolium, the hybrid between A. trichomanes s.l. and A. septentrionale s.l. was studied at three ploidy levels, diploid, triploid and tetraploid. The cpDNA technique allowed us to investigate the mode of hybrid formation between sexual species for the first time over a wide geographic range and with a large sample size. Morphological variation in this hybrid has previously been attributed to different reciprocal parental combinations, and to the influence of chloroplast genes on morphogenesis. Our results demonstrate that one parent, A. septentrionale s.l., acts predominantly as the female parent in these hybrids, with only one population of A. x alternifolium showing reciprocal hybridity. The discovery of predominantly unidirectional hybrid formation in this hybrid may be explained by the different breeding systems of the parental taxa. The role of gametophyte ecology is also assessed.  相似文献   

16.
Studies of quantitative trait loci based on genetic linkage maps require the establishment of a mapping population. Permanent mapping populations are more ideal than temporary ones because they can be used repeatedly. However, there has been no reported permanent sporophyte population of economically important kelp species. Based on the characteristics of the kelp life cycle, we proposed a method to establish, and then constructed experimentally, an “immortalized F2” (IF2) population of Undaria pinnatifida. Doubled-haploid “female” and “male” sporophytes were obtained through the parthenogenesis of a female gametophyte clone and the selfing of a “monoicous” gametophyte clone (originally male), respectively, and they were used as the parents. The F1 hybrid line was generated by crossing the female and male gametophytes derived from the respective female and male parents. Full-sibling F2 gametophyte clones, consisting of 260 females and 260 males, were established from an F1 hybrid sporophyte. Thirty-five females and 35 males were randomly selected and paired to give rise to an IF2 population containing 35 crossing lines. A parentage analysis using 10 microsatellite markers confirmed the accuracy of the IF2 population and indicated the feasibility of this method. This proposed method may be adapted for use in other kelp species, and thus, it will be useful for genetic studies of kelp.  相似文献   

17.
Wheat (Triticum aestivum L., 2n = 6x = 42, AABBDD) florets were emasculated and pollinated using two apomictic wheatgrass [Elymus rectisetus (Nees in Lehm.) A. Love & Connor, 2n = 6x = 42, SSYYWW] accessions, one of which produces 2n pollen. A 2n = 42 (BII) hybrid and four 2n = 63 (B III) hybrids were obtained. The spike morphology of the B II hybrid was intermediate to that of its parents. The pollen mother cells (PMCs) of this hybrid contained on average 38.361 and 1.62 II, which was consistent with its disparate genome composition (ABDSYW). Its pollen failed to stain and no BC1 progeny was obtained. The B III hybrids (reduced egg fertilized with unreduced sperm) were grasslike and had a full complement of E. rectisetus chromosomes, the synapsis of which was slightly impaired by wheat haplome and/or cytoplasm. Their PMCs contained on average 16.30 II, 25.72 I, and 1.54 multivalents (III plus IV). Pollen stainability in these hybrids was low (<1%), and when they were used as females, one 54- and 60-chromosome BC1 were obtained. A mean of 13.25 II was observed in PMCs of the 54-chromosome BC1 and pollen stainability was 10%. Pollen stainability in the 60-chromosome BC1 was only 5%. The use of 2n-pollen-producing E. rectisetus accession accelerated hybrid and BC1 formation and may accelerate the ultimate transfer of apomixis to wheat.  相似文献   

18.
Five hybrids were obtained from 12 seeds formed in 26 emasculated florets of A. riparium pollinated by A. repens. The hybrid plants were morphologically intermediate between the parents for vegetative and spike characteristics, although they resembled A. repens more closely than A. riparium. The 28-chromosome A. riparium parent behaved cytologically as an allotetraploid and formed an average of 13.98 II and 0.04 I in 94 cells at metaphase I. An average of 20.27 II and 0.36 IV were observed at metaphase I in 55 cells of A. repens, which was designated as a segmental autoallohexaploid. The hybrids contained 35 chromosomes and averaged 6.75 I, 12.49 II, 1.05 III, 0.01 IV, and 0.01 V in 162 cells interpreted at metaphase I. Bivalent chromosome pairing in the hybrids was attributed to autosyndetic pairing of 2 A. repens genomes and allosyndetic pairing between 1 A. riparium genome and 1 A. repens genome. Multivalent chromosome associations were attributed to structural hybridity. A. repens and A. riparium apparently share a genome in common, and this genome is the one responsible for rhizomes in both species. A. riparium was given a genome formula of R2R2SS; whereas the A. repens genome formula was written as R1R1X1X1X2X2, and the hybrid genome formula was designated as R1R2X1X2S. The “S” genome of A. riparium was derived from A. spicatum, and the “R” genome is the genome shared by A. repens and A. riparium. The origin and distribution of the so-called “X” genomes of A. repens remain unknown. The hybrids produced from 3 to 10% stainable pollen; however, no seed was set on the hybrids during 2 years in the field.  相似文献   

19.
L. Paoli  M. Landi 《Photosynthetica》2013,51(2):312-316
We studied the photosynthetic performance of sterile and fertile sporophytes in a natural population of the fern Dryopteris affinis growing within a riparian forest (Central Italy) using chlorophyll (Chl) a fluorescence transients, the OJIP phase, where O is for the minimum fluorescence, P is for the peak (the maximum), and J and I are inflections. The “vitality” of the samples was assessed by the maximum quantum yield of primary photochemistry obtained indirectly from the fluorescence data (Fv/Fm); in the same way, the so-called performance index (PIABS) was obtained from fluorescence data. The photosynthetic performance (inferred from PIABS) of D. affinis changed significantly with the seasonal development of the fronds. The highest photosynthetic performance was recorded in the summer, corresponding to the period of spore release. The photosynthetic performance decreased in the winter, down to the minimal values of senescent fronds reached at the end of the seasonal cycle (May-June). On the whole, during the seasonal development, sterile and fertile fronds had a similar photosynthetic behaviour, as inferred from fluorescence data. At the end of spore maturation and dispersal (September-October), the fertile fronds showed somewhat lower photosynthetic performance than the sterile fronds, as revealed by PIABS. Being a long-lived fern, confined to humid and undisturbed sites in the Mediterranean, D. affinis deserves to be further investigated as a potential indicator of ecological continuity in Mediterranean riparian forests.  相似文献   

20.
We have extended an earlier study, in which we characterized in detail the electrostatic potentials on the inner and outer surfaces of a group of carbon and BxNx model nanotubes, to include several additional ones with smaller diameters plus a new category, C2xBxNx. The statistical features of the surface potentials are presented and analyzed for a total of 19 tubes as well as fullerene and a small model graphene. The potentials on the surfaces of the carbon systems are relatively weak and rather bland; they are much stronger and more variable for the BxNx and C2xBxNx. A qualitative correlation with free energies of solvation indicates that the latter two categories should have considerably greater water solubilities. The inner surfaces are generally more positive than the corresponding outer ones, while both positive and negative potentials are strengthened by increasing curvature. The outsides of BxNx tubes have characteristic patterns of alternating positive and negative regions, while the insides are strongly positive. In the closed C2xBxNx systems, half of the C–C bonds are double-bond-like and have negative potentials above them; the adjacent rows of boron and nitrogens show the usual BxNx pattern. When the C2xBxNx tubes are open, with hydrogens at the ends, the surface potentials are dominated by the B+–H and N–H+ linkages.Figure Calculated electrostatic potential on the molecular surface of closed (6,0) B48N48; a is an outside view, while b shows the interior. Color ranges, in kcal mol–1: red, greater than 20; yellow, between 20 and 0; green, between 0 and –10; blue, between –10 and –20; purple, more negative than –20  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号