首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chilling at 2.5°C reduced the subsequent growth of cucumber ( Cucumis sativus L.) radicles at 25°C. The reduction in radicle growth was linear for 1–3 days of chilling at ≈10% per day of treatment, but then it increased in a non-linear pattern until subsequent radicle growth was all but eliminated by 6 days of chilling. A heat shock of 40°C for 4–12 min increased chilling tolerance such that 4 days of chilling caused only a 36% decrease in radicle growth, compared to 66% for seedlings not heat shocked. Heat shocks were only able to protect that part of radicle growth that was in excess of the linear decrease in radicle growth projected from 0–3 days. There appear to be two effects of chilling on radicle growth. The first inhibition of subsequent growth was linear and was not affected by heat shocks. The second inhibition was much more severe; it appeared after 3 days of chilling and could be prevented by heat shock. Seeds classified with different levels of vigor (i.e., different initial rates of growth) did not respond significantly different to chilling stresses following heat-shock treatments.  相似文献   

2.
吸胀冷害是干种子在吸胀阶段遭受低温造成不萌发的现象,结果可能造成农作物损失严重。虽然吸胀过程中细胞膜的修复是关键事件,而且细胞膜在响应水分和温度胁迫中扮演重要角色,但是种子吸胀过程中膜变化的过程,特别是膜流动性变化过程研究较少。本文比较了吸胀冷害耐受型(LX)和敏感型(R5)两个大豆品种在吸胀冷害过程中膜脂不饱和度(double bond index, DBI)的变化,结果发现,LX和R5在常温(25℃)吸胀时变化趋势一致,质体膜脂DBI升高,质体外膜脂中磷脂酰甘油(phosphatidylglycerol, PG)分子DBI下降。LX和R5在低温(4℃)吸胀时DBI变化有很大差异,低温吸胀仅仅延缓了耐受型LX中质体膜脂DBI的升高,但是敏感性R5质体膜脂DBI不仅没有升高反而下降。用浓度33%的聚乙二醇 (polyethylene glycol, PEG)引发没有直接引起DBI变化,但是所引起的细微而显著的变化可能为萌发做好准备。PEG引发处理后的R5在吸胀冷害后第二和第三阶段质体膜脂DBI迅速增加,这个增加模式与LX的DBI增加相似。结果表明,吸胀冷害延缓或者阻滞了质体膜脂不饱和度的升高,大豆种子的吸胀冷害抗性与质体膜脂不饱和度正相关,提高质体膜质DBI可以提高吸胀冷害抗性。  相似文献   

3.
Chilling whole cucumber seedlings that had 10‐mm long radicles for 4 days at 2.5°C significantly inhibited subsequent radicle growth both by increasing the time it took the seedlings to recover from chilling and attain a linear rate of radicle growth, and by decreasing the subsequent rate of linear growth. Exposing cucumber seedlings to 45°C for up to 20 min had no effect on subsequent radicle growth, while longer exposures produced reductions in growth. A heat shock at 45°C for 10 min induced the optimal protection to 4 days of chilling at 2.5°C by reducing chilling inhibition from 60 to 42%. Two hours after being chilled, heat shocked or heat shocked and then chilled, there was no difference in protein content of the apical 1 cm of the seedling radicle among these treatments and the non‐heat shocked, non‐chilled control. Two days after treatment, the protein content was still similar in tissue that had been heat shocked or heat shocked and chilled, while it was significantly reduced in tissue that had been chilled. In general, 2 h after treatment, the activity of the 5 antioxidant enzymes examined in this study [superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC 1.11.1.6), ascorbate peroxidase (APX; EC 1.11.1.11), guaiacol peroxidase (GPX; EC 1.11.1.7) and glutathione reductase (GR; EC 1.6.4.2)] were reduced by chilling and unaffected or increased by heat shock. When heat shock was followed by chilling, there was a consistent effect of the heat shock treatment on preventing the loss of enzyme activity following chilling. This protective effect of the heat shock treatment was even more pronounced after 2 days of recovery at 25°C for SOD, CAT and APX. In contrast, the activity of GR and GPX was substantially higher in chilled tissue than in tissue that had been heat shocked before being chilled. Elevated levels of GR and GPX therefore appear to be correlated with the development of chilling injury, while elevated levels of SOD, CAT and APX appear to be correlated with the development of heat shock‐induced chilling tolerance.  相似文献   

4.
Imbibitional chilling injury of soybean seeds was studied using light and electron microscopy. Intact seeds were allowed to take up water at 4 C or room temperatures and the ultrastructure of the radicle was examined after hydration. In chilled seeds, mitochondria showed weakly defined envelopes and cristae, in contrast to the well-formed internal structure in the controls. Nuclei of chilled seeds were irregular in shape. Tannic acid was used as a probe of plasmalemma integrity. Most cells in both chilled and control treatments were able to exclude tannin, indicating that chilling injury effects did not damage the plasma membrane enough to allow passage of molecules of that size.  相似文献   

5.
Cottonseed exposed to a temperature of 5° during hydration are killed, or the subsequent germination performance of surviving seed is seriously inhibited. Exposure to chilling for periods as short as 30 minutes reduces germination speed and induces root abnormalities, while chilling for 12 hours may kill all seed. Sensitivity to chilling persists during the initial 2 to 4 hours of hydration. Seeds imbibed 4 hours at 31°, then dried, retain immunity to chilling. An irreversible event that is blocked or disrupted by chilling apparently occurs during early seed hydration.  相似文献   

6.
The aim of this study was to develop the method for increasing resistance of sunflower seedlings ‘Wielkopolski’ to chilling. Seeds were conditioned at 25 °C for 2 days in water to 15, 20 and 25 % moisture content or in salicylic or jasmonic acid in concentration of 10?2; 10?3 and 10?4 M or brassinolide in concentration of 10?6; 10?8 and 10?10–15 % moisture content. After 2 days of incubation the conditioned seeds were heat shocked at 45 °C for 0, 30, 60, 120 and 240 min and 5 mm seedlings were exposed to chilling at 0 °C for 21 days. The effectiveness of the methods was assessed by evaluation of roots growth in Phytotoxkit Microbiotest, changes in the activity of dehydrogenases, the integrity of the cytoplasmic membrane and formation of polysomes after seedling were returned to 25 °C for 72 h. Seeds were conditioned at 25 °C for 2 days in water to 15 % moisture content and then heat shocked at 45 °C for 2 h decreased chilling injury of seedlings expressed by subsequent growth of the roots, electrolyte leakage, dehydrogenases activity and polysomes formation. Application of heat shock of 45 °C for 2 h during seed conditioning additionally provided seedling protection against subsequent chilling conditions. Brasinolide, salicylic acid or jasmonic acid applied during seeds conditioning exhibited further beneficial effect on seedling resistance to chilling. The most pronounced effect was obtained due to seed conditioning to 15 % moisture content in solutions of brassinolide in concentration of 10?8 M. After 2 days of imbibition treated in this way seeds were exposed to heat shock at 45 °C for 2 h. The role of physiological events in improvement of sunflower chilling tolerance are discussed.  相似文献   

7.
Chilling Stress to Soybeans during Imhibition   总被引:14,自引:11,他引:3       下载免费PDF全文
Embryos, excised from seed coats of soybeans (Glycine max Merr. cv. `Wayne'), leak profusely during the first minutes of imbibition. A discontinuity of temperature/leakage patterns occurs between 10 and 15 C; as embryos imbibe at 10 C or lower, disproportionately more solutes leak out per unit of water imbibed. Short periods of imbibition at or below 12 to 14 C reduce embryo germination and axis elongation; injury results from imbibition at 2 C for as little as 5 minutes. Humidifying embryos to 35 to 50% moisture before imbibition reduced leakage during imbibition and imparted some resistance to imbibitional chilling injury.

The period of profuse leakage is interpreted as a time of membrane reorganization. Imposing a low temperature during this period prolongs the rapid leakage, suggesting delayed or faulty membrane reorganization. Reduced cold sensitivity of embryos with an initial 35 to 50% moisture content is presumed to be due to at least partial membrane reorganization in the embryo before imbibition. These data collectively are taken to indicate that low temperature interferes with normal membrane reorganization during imbibition, probably by modifying the physical state of membrane phospholipids, and that the consequent abnormal organization of membranes is a basic cause of low temperature injury.

  相似文献   

8.
The core temperature of the rainbow trout Oncorhynchus mykiss (3·5 kg) dropped to 1·0° C during the first 6 h of chilling at 0·5° C, remained stable until 24 h, and dropped significantly to 0·7° C after 39 h. Blood plasma osmolality increased and muscle moisture content decreased gradually with increasing chilling time. After 39 h of chilling, the rainbow trout experienced 40 mosmol l-1 higher blood plasma osmolality and 2·8% less muscle moisture content compared with initial values. In the Atlantic salmon Salmo salar (5·3 kg), core temperature dropped to 1·3° C and blood plasma osmolality increased significantly during the first 6 h of chilling at 0·5° C, but remained relatively stable throughout the rest of the experimental period. After 39 h of chilling, the salmon experienced 20 mosmol l-1 higher blood plasma osmolality and 0·5% less muscle moisture content compared with initial values. In rainbow trout muscle moisture content was inversely related to blood plasma osmolality indicating reduced seawater adaptation with increasing hours of chilling. No such relationship was observed in the Atlantic salmon. Hence, changes in plasma osmolality and muscle moisture in the Atlantic salmon do not indicate osmoregulatory failure since the new levels, once established, were maintained throughout the chilling time.  相似文献   

9.
The ultrastructure of Typha latifolia pollen was examined as a function of pollen moisture content and incubation temperature, in order to identify possible lesions induced by imbibitional chilling. A syndrome of structural traits was found which characterizes damaged grains. Compared to viable grains, the protoplast of damaged pollen has a higher proportion of its volume occupied by vesicles, and less volume occupied by cytoplasm. Damaged grains also tend to have dilated cisternae of endoplasmic reticulum, larger starch grains and lipid bodies, poorly preserved mitochondria and membranes, and, sometimes, numerous electron-dense globules associated with membranes. The percentage of grains exhibiting this damage syndrome correlates closely with the number of ungerminated grains in most samples, regardless of moisture content or incubation temperature. Injury due to rapid imbibition from the dry state or to imbibitional chilling appear to be similar structurally, regardless of whether the stresses are imposed singly or together. The injury is not confined to one cell component (e.g., mitochondria), but may involve a generalized disruption of membranes. These results suggest that similar stress responses are elicited by imbibition from the dry state and by imbibitional chilling.  相似文献   

10.
Storage of neem (Azadirachta indica) seeds is difficult because of their sensitivity to chilling stress at moisture contents (MC) > or =10% or imbibitional stress below 10% MC. The hypothesis was tested that an elevated gel-to-liquid crystalline phase transition temperature (Tm) of membranes is responsible for this storage behaviour. To this end a spin probe technique, Fourier transform infrared microspectroscopy, and electron microscopy were used. The in situ Tm of hydrated membranes was between 10 degrees C and 15 degrees C, coinciding with the critical minimum temperature for germination. During storage, viability of fresh embryos was lost within two weeks at 5 degrees C, but remained high at 25 degrees C. The loss of viability coincided with an increased leakage of K+ from the embryos upon imbibition and with an increased proportion of cells with injured plasma membranes. Freeze-fracture replicas of plasma membranes from chilled, hydrated axes showed lateral phase separation and signs of the inverted hexagonal phase. Dehydrated embryos were sensitive to soaking in water, particularly at low temperatures, but fresh embryos were not. After soaking dry embryos at 5 degrees C (4 h) plus 1 d of further incubation at 25 degrees C, the axis cells were structurally disorganized and did not become turgid. In contrast, cells had a healthy appearance and were turgid after soaking at 35 degrees C. Imbibitional stress was associated with the loss of plasma membrane integrity in a limited number of cells, which expanded during further incubation of the embryos at 25 degrees C. It is suggested that the injuries brought about by storage or imbibition at sub-optimal temperatures in tropical seeds whose membranes have a high intrinsic Tm (10-15 degrees C), are caused by gel phase formation.  相似文献   

11.
Embryo Dormancy in Seeds of Acer platanoides   总被引:1,自引:0,他引:1  
On dispersal the seed of Acer platanoides contained a dormant embryo, from which dormancy could be removed by chilling but not by hormone application. Dormany was deep in the embryonic axis, particularly in the radicle, but less so in the cotyledons. Under the storage conditions employed the dormancy pattern was modified so that during the subsequent incubation at 20°C, cotyledon expansion of isolated embryos from stored fruits was more rapid than that of isolated embryos from newly dispersed fruits. In addition, the dormancy of isolated embryos from fruits stored for several weeks could be broken by incubation in kinetin. It was concluded that embryo dormany in this seed can be divided into two phases, an initial phase when the embryo responds to chilling but not to cytokinins, and a later phase when cytokinins also become effective. The relationship between this transition and the apparent gradual reduction in the depth of embryo dormancy during storage is also discussed. The chilling period necessary for dormancy breaking was reduced by kinetin and to a lesser extent by gibberellin, indicating a close relationship between the concentrations of these hormones and the chilling requirement.  相似文献   

12.
Lima bean seeds (Phaseolus lunatus L.) and excised embryonic axes can be injured during imbibition at temperatures below 25°. The early imbibitional stage is critical; imbibition at 25° followed by low temperature exposure does not cause injury. Sensitivity to chilling injury is conditioned by the pre-harvest seed history. Low vigor (bleached) seeds are most sensitive to injury, the effects of which can be intensified by restricted oxygen supply during early axis growth. The seed coat, by preventing water uptake, can permit the seed to avoid injury. This protective mechanism is most effective at low temperature and high moisture stress. Immediately following low temperature imbibition, injured axes lose organic materials, probably nucleotides. This organic leachate is a potential influence on soil microorganisms and, together with the temperature sensitivity, vigor, and seed coat effect undoubtedly is important in controlling the potential variability in germination shown by a seed population.  相似文献   

13.
Germination of dormant achenes of wild buckwheat (Polygonum convolvulus L.) was promoted at 25 C if they were stratified at low temperatures. Preincubation at either 2 C or 10 C promoted subsequent germination at 25 C equally, although the period of time to reach maximum germination was shorter for the 2 C treatment. Moreover, a preincubation treatment of a daily alternating cycle 2 C for 20 hr and 10 C for 4 hr promoted germination at 25 C more than either temperature alone. Removing portions of the hard pericarp and testa did not promote germination of dormant achenes at 25 C except when the portion of those structures covering the tip of the radicle was removed. This suggests that the structures covering the embryo do not prevent germination by restricting the movement of water or gases but rather restrict growth mechanically. Complete removal of the pericarp promoted germination, but much higher germination was obtained when the testa was also removed, indicating that the pericarp may not be the main factor in dormancy. Thus the role of low temperature in the loss of dormancy in wild buckwheat achenes may be to promote the production of hydrolytic enzymes that lower the mechanical resistance of pericarp and testa and/or increase the embryo growth potential beyond some threshold level and thereby enable the radicle to overcome the resistance to growth imposed by the structures covering the embryo.  相似文献   

14.
The responses of two cultivars of soybean (Merr.) to a chilling treatment (4 C for first hour of imbibition) were compared. The germination of cv. Biloxi was unaffected by the treatment, while the germination of cv. Fiskeby was reduced. The phospholipid fatty acids of dry axes of the two cultivars were very similar, and, thus, could not be correlated with their responses to chilling. The fatty acid composition of chilling-tolerant Biloxi did not change over a subsequent 23-hour warm incubation, but there was a marked reduction in the unsaturated fatty acids of chilling-sensitive Fiskeby after 12 hours, which may be a symptom of deterioration. Protein synthesis in both cultivars was reduced by the chilling treatment. Redrying of Biloxi axes up to 18 hours after the onset of imbibition had no effect on their germination upon rehydration. Germination of Fiskeby axes was reduced by redrying after 8 hours of imbibition. After 7 months of dry storage of intact seeds, the sensitivity of the axes to chilling was retested. Biloxi axes had become chilling-sensitive, while the germination of Fiskeby axes was reduced to zero by the chilling treatment. A hypothesis is presented that imbibitional chilling sensitivity is an indication of reduced vigor, axes with a high vigor can tolerate the stress, while those without cannot.  相似文献   

15.
选用对吸胀冷害敏感的大豆[Glycine max(L.)Merr.]品种"黑河23"种子为试材,研究了渗透调节增强大豆种子活力过程中种子质膜氧化还原活性的变化.结果表明,大豆种子活力指数与种子质膜氧化还原活性呈正相关.与对照相比,渗控12 h显著提高大豆种子活力,表现在发芽指数、活力指数和TF生成量的提高,种子质膜NADH和NADPH氧化速率及Fe(CN)63-和EDTA-Fe3 还原速率明显上升;随着引发时间的延长,种子活力上升变缓,种子质膜NADH和NADPH氧化速率及Fe(CN)63-还原速率上升速度变慢,EDTA-Fe3 的还原速率在渗控24 h后开始下降,但渗控72 h仍高于对照.  相似文献   

16.
Mefluidide, N-(2,4-dimethyl-5[([trifluoromethyl]sulfonyl) amino] phenyl)acetamide, a synthetic plant growth regulator, was capable of triggering an increase in endogenous free abscisic acid content when corn (Zea mays L.) plants were grown in a nonstress, day/night, temperature regime (26°C) with sufficient moisture supply. The relevance of such an abscisic acid increase prior to chilling exposure and the water relations during chilling are discussed in reference to the mefluidide protection of the chilled corn plants.  相似文献   

17.
Cucumber seedling radicles decrease in chilling tolerance as they increase in length or decrease in vigor. The protein content of the apical 5 mm of the radicle decreased with decreases in chilling tolerance ( R 2 = 0.92). This general reduction in protein content was reflected in a decrease of six dehydrin-like proteins with apparent molecular weights of 13.0, 15.0, 16.8, 23.0, 26.8, and 33.5 kDa. The disappearance of naturally occurring dehydrin-like proteins in cucumber seedling radicles as they elongate or lose vigor was correlated with a loss of chilling tolerance. Exposure to an osmotic (0.6 M mannitol) or heat (2 min at 45°C) stress enhanced chilling tolerance. The osmotic-shock treatment induced both chilling tolerance and the appearance or strengthening of dehydrin-like proteins previously present in radicles. The heat-shock treatment also induced high levels of chilling tolerance and protein(s) that reacted with a 23 and 70 kDa antibody. However, these heat-shock protein (HSPs) did not cross react with the probe for dehydrin-like proteins. When organized into high, medium, and low chilling tolerance groups, radicle that were chilling tolerant contained either the 13.0 and 16.8 kDa dehydrin-like proteins, or the 15.0 and 23.0 kDa dehydrin-like proteins, or the 23 or 70 kDa HSP.  相似文献   

18.
Chilling injury is sustained by dry pollen of Typha latifolia L. upon hydration in germination medium at 0°C. This injury is evidenced as poor germination, low vigor, and depressed respiration. Isolated mitochondria showed multiple sites of impaired electron transport. Besides losses of cytochrome (Cyt) c and NAD+, the activities of membrane-bound enzyme complexes such as Cyt oxidase, NADH-duroquinone oxidoreductase, succinate-duroquinone oxidoreductase, and malate-duroquinone oxidoreductase were severely affected.

Similarly, as in isolated mitochondria, in situ tests of mitochondrial activity showed that Cyt c was partially lost from its site of action. Re-addition of the lost Cyt c to the grains restored the N,N,N′,N′-tetramethyl p-phenylenediamine dihydrochloride plus ascorbate-mediated electron transport from Cyt c to O2, but did not significantly accelerate the overall O2 uptake. Electron flow to duroquinone in the injured grains was low, indicating that lesions at the substrate side of ubiquinone determine the rate of O2 consumption. Leakage of NAD+, and also of adenylate phosphates and Krebs cycle substrates out of the injured grains, was considerable.

Increasing the initial moisture content of the grains strongly enhanced their resistance to cold hydration. Below 17% moisture content (fresh weight basis), the decrease in vigor closely matched the loss of NAD+ and adenosine phosphates. Vitality was irreversibly lost by cold hydration below 10 to 12% initial moisture content.

Injury to dry pollen was prevented by imbibition at 27°C. Decrease of vigor and increased leakage, however, started below 20°C, and complete loss of vitality occurred below 10°C.

These results are interpreted as evidence that loss of membrane integrity is the primary cause of imbibitional chilling injury.

  相似文献   

19.
Tissue slices of zucchini squash (Cucurbita pepo L., cv. Tigress) fruit were exposed to ultraviolet-C (UV-C) radiation from germicidal lamps for 1, 10 or 20 min; however, only 10 and 20 min UV-C exposure significantly reduced microbial activity and deterioration during subsequent storage at 5 or 10 degrees C. UV-C treated slices had higher respiration rates than controls; however, the ethylene production of the slices was not affected by UV-C treatments. Slight UV-C irradiation damage (reddish brown discoloration) was detected on the surface of 10 and 20 min-treated slices after 12 days of storage at 10 degrees C. Slices stored at 5 degrees C did not show UV-C damage. Chilling injury was not observed until after 20 days of storage at 5 degrees C. The symptoms of chilling injury appeared as dried sunken brown spots on the surface of cortex tissue. UV-C treatments did not affect the degree of chilling injury during storage at 5 degrees C. UV-C treatment also had no consistent effect on sugar or malic acid concentrations. The most pronounced effect of UV-C irradiation was to retard microbial growth thereby providing a basis for the frequently observed delay in senescence and subsequent deterioration in fruit tissues.  相似文献   

20.
Identifying and using native insect resistance genes is the core of integrated pest management. In this study, 10 experimental corn, Zea mays L., hybrids and 10 inbred lines were screened for resistance to major ear-feeding insects in the southeastern Coastal Plain region of the United States during 2004 and 2005. Ear-feeding insect damage was assessed at harvest by visual damage rating for the corn earworm, Helicoverpa zea (Boddie), and by the percentage of kernels damaged by the maize weevil, Sitophilus zeamais Motschulsky, and stink bugs [combination of Euschistus servus (Say) and southern green stink bug, Nezara viridula (L.)]. Among the eight inbred lines and two control populations examined, C3S1B73-5b was resistant to corn earworm, maize weevil, and stink bugs. In contrast, C3S1B73-4 was resistant to corn earworm and stink bugs, but not to maize weevil. In a similar manner, the corn hybrid S1W*CML343 was resistant to all three ear-feeding insects, whereas hybrid C3S1B73-3*Tx205 was resistant to corn earworm and maize weevil in both growing seasons, but susceptible to stink bugs in 2005. The silk-feeding bioassay showed that corn earworm developed better on corn silk than did fall armyworm. Among all phenotypic traits examined (i.e., corn ear size, husk extension, and husk tightness), only corn ear size was negatively correlated to corn earworm damage in the inbred lines examined, whereas only husk extension (i.e., coverage) was negatively correlated to both corn earworm and maize weevil damage on the experimental hybrids examined. Such information could be used to establish a baseline for developing agronomically elite corn germplasm that confers multiple ear-feeding insect resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号