首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SYNOPSIS Activation of sporozoites in oocysts of Eimeria acervulina (chicken), E. intricata (sheep), and E. scabra (swine) occurred after pretreatment in aqueous 0.02 M cysteine hydrochloride under an atmosphere of CO2, followed by incubation in a trypsin-bile mixture. Sporozoites of E. stiedae (rabbit), E. bilamellata (squirrel), and Isospora canis (dog) became activated when incubated in trypsin and bile with or without prior CO2-pretreatment of oocysts; however, when CO2-pretreatment was used, activation of these species in trypsin and bile was greatly enhanced. For E. acervulina, 12% of the oocysts were activated after 4 hr CO2-pretreatment and 10 hr incubation in trypsin and bile at 43 C; higher temperatures or longer pretreatment times did not cause greater activation. Eimeria intricata oocysts became activated after 1 hr pretreatment and 10 hr incubation in trypsin and bile at 37, 39 or 41 C, respectively. The highest activation (31%) occurred after 20 hr pretreatment and 10 hr incubation in trypsin and bile at 41 C. Ninety percent of E. scabra oocysts contained active sporozoites after 1 hr CO2-pretreatment and 10 hr incubation in trypsin and bile at 37 C. At 39 or 41 C, 100% activation occurred with this species after similar pretreatment and treatment periods. With E. bilamellata, 64% activation occurred in nonpretreated oocysts incubated 10 hr in trypsin and bile at 41 C, whereas 100% activation occurred if oocysts were pretreated with CO2 for 1 hr before treatment with trypsin and bile. Thirty-one, 35, and 36% of CO2-pretreated E. stiedae oocysts were activated after 1 hr incubation in trypsin and bile at 37, 39 or 41 C, respectively, whereas 1, 2, and 20% activation occurred in nonpretreated oocysts incubated at the same temperatures. Sporozoites in 99-100% of I. canis oocysts were activated after 10 hr treatment in trypsin and bile with or without 1 hr CO2-pretreatment at 23, 37, 39 or 41 C.  相似文献   

2.
SYNOPSIS. Oocysts of Eimeria bovis were found to undergo excystation when subjected at 39 C to a pretreatment consisting of exposure for 24 hr to CO2 and air (50–50), and a treatment for 7 hr with a mixture of bile and trypsin. At pH's of 6.0 thru 10.0 with tris-maleate buffer, excystation occurred over the entire range of pH tested, with the highest levels at pH 7.5-8.5. No adverse or inhibitive effect on excystation or the viability of the sporozoites was observed. Disintegration of sporozoites occurred within the sporocysts of intact oocysts at each of the pH levels studied when boric acid-borax, ammediol, and glycine-sodium hydroxide buffers were used in the treatment medium. Phosphate buffer inhibited excystation when used in the excysting medium. Excystation occurred at levels above 90% in all dilutions of taurocholic, glycocholic, glycotaurocholic, and cholic acids included in the study (0.5-10.0%) except for the 10% and 5% dilutions of cholic acid and the 10% dilution of glycotaurocholic acid. In the latter 3 dilutions, sporozoites within the sporocysts of intact oocysts disintegrated. Excystation levels above 90% were observed in the 50% and 10% dilutions of fresh bovine bile, and in the 5% dilution of lyophilized bovine bile. Lower levels of excystation occurred in greater dilutions of both kinds of bile. No excystation occurred when any of the bile acids, fresh bovine bile or lyophilized bile were used without trypsin, except for fresh bile that contained a heavy suspension of bacteria and fungi. In a medium containing trypsin and heat-treated bile, heat-treated bile acids, or no bile, 2.5–8% of the oocysts excysted. The findings indicate that satisfactory excystation can be obtained with a treatment medium containing tris-maleate at pH 7.5–8.5, 0.25% trypsin, and 1% of one of the bile acids.  相似文献   

3.
In vitro excystation of sporozoites of the heteroxenous coccidian Caryospora simplex Léger, 1904 (Apicomplexa: Eimeriorina) is described. Sporocysts freed mechanically from oocysts released a maximum of 51% of their sporozoites within 45 min at 25°C and a maximum of 74% within 20 min at 37°C when incubated in a 0.25% (w/v) trypsin–0.75% (w/v) sodium taurocholate (bile salt) excystation solution. At emergence from sporocysts, sporozoites were weakly motile then became highly active after about 2 min in excystation solution. Sporozoites within sporocysts exposed to bile salt only became highly motile within 25 min at 25°C and within 15 min at 37°C but did not excyst. When exposed only to trypsin at the above temperatures, the Stieda body dissolved; the substieda body remained intact, and the sporozoites exhibited only limited motility within sporocysts; only a few excysted. Intact, sporulated oocysts incubated at 25° or 37°C in 0.02 M cysteine-HC1 and a 50% CO2 atmosphere for 18 h had no morphologic changes in the oocyst wall. Further incubation of these intact oocysts in excystation solution for 30 min at 37°C caused neither motility of sporozoites within sporocysts nor excystation. Grinding oocysts for 30 sec in a motor-driven, teflon-coated tissue grinder caused motility of some sporozoites within sporocysts but did not result in excystation.  相似文献   

4.
Successful excystation of sporulated Eimeria spp. oocysts is an important step to acquire large numbers of viable sporozoites for molecular, biochemical, immunological and in vitro experiments for detailed studies on complex host cell-parasite interactions. An improved method for excystation of sporulated oocysts and collection of infective E. bovis- and E. arloingi-sporozoites is here described. Eimeria spp. oocysts were treated for at least 20 h with sterile 0.02 M L-cysteine HCl/0.2 M NaHCO3 solution at 37 °C in 100% CO2 atmosphere. The last oocyst treatment was performed with a 0.4% trypsin 8% sterile bovine bile excystation solution, which disrupted oocyst walls with consequent activation of sporozoites within oocyst circumplasm, thereby releasing up to 90% of sporozoites in approximately 2 h of incubation (37 °C) with a 1:3 (oocysts:sporozoites) ratio. Free-released sporozoites were filtered in order to remove rests of oocysts, sporocysts and non-sporulated oocysts. Furthermore, live cell imaging 3D holotomographic microscopy (Nanolive®) analysis allowed visualization of differing sporozoite egress strategies. Sporozoites of both species were up to 99% viable, highly motile, capable of active host cell invasion and further development into trophozoite- as well as macroment-development in primary bovine umbilical vein endothelial cells (BUVEC). Sporozoites obtained by this new excystation protocol were cleaner at the time point of exposure of BUVEC monolayers and thus benefiting from the non-activation status of these highly immunocompetent cells through debris. Alongside, this protocol improved former described methods by being is less expensive, faster, accessible for all labs with minimum equipment, and without requirement of neither expensive buffer solutions nor sophisticated instruments such as ultracentrifuges.  相似文献   

5.
Release of sporozoites from the oocysts of Cryptosporidium baileyi is described from Nomarski interference-contrast microscopy. Just prior to excystation, the four sporozoites became motile and rearranged themselves within the oocyst. The sporozoites were then rapidly expelled through an opening that formed in the oocyst wall, and the residuum was either released or retained within the oocyst. Excysted sporozoites were crescent shaped and measured 5.0–9.0 μm × 1.0–1.6 μm (x?= 6.8 × 1.1 μm). Excystation occurred when sodium taurocholate or a mixture of trypsin and sodium taurocholate was present in the incubation medium. High levels of excystation occurred at 37° or 40°C, but excystation did not occur at 4°C. The ability of biles from two avian and two mammalian hosts to produce excystation of C. baileyi was also studied. After a 2-h incubation at 40°C, the percentages of excystation were 69.5% in goat bile, 45.0% in pig bile, 33.0% in chicken bile, and 34.5% in turkey bile.  相似文献   

6.
SYNOPSIS Sporogony of oocysts of Isospora felis from the cat was studied by observing the individual oocysts. Unsporulated oocysts were passed with the fresh feces. The sporont divided into 2 ball-like sporoblasts which elongated and changed into sporocysts each of which 4 sporozoites then formed. All of the sporulating oocysts completed sporulation at 20 C in 40 hr, at 25 C in 24 hr, at 30 C in 12 hr, and at 38 C in 8 hr. The percentages of oocysts which sporulated at 20, 25, 30 and 38 C were 96, 95, 95 and 95 respectively. No sporulation occurred at 45 C and 50 C when oocysts were incubated for 4 hr. These oocysts evidently died because, on reincubation at 30 C for 4 hr, they failed to develop.  相似文献   

7.
ABSTRACT. Whereas excystation of sporozoites from oocysts of most coccidian species requires exposure to reducing conditions followed by pancreatic enzymes and bile salts, sporozoites of a bovine isolate of Cryptosporidium excysted without exposure to either reducing conditions or to pancreatic enzymes and bile salts. Without prior exposure to reducing conditions, a high percent excysted after incubation in a mixture of trypsin and bile salts in Ringer's solution; fewer excysted after incubation in tap water, even fewer after incubation in salt solutions, and none after incubation in saliva. Excystation, generally greater at pH 7.6 than at pH 6.0 and at 37°C than at 20°C, was observed as early as 1 h after incubation in water or the trypsin-bile mixture. These findings provide circumstantial evidence that oocysts of Cryptosporidium can excyst in extraintestinal sites and liberate sporozoites that can initiate autoinfection.  相似文献   

8.
Improved rates of in vitro excystation of sporozoites from sporocysts of Sarcocystis capracanis, Sarcocystis cruzi, and Sarcocystis tenella were obtained by pretreating sporocysts with an aqueous sodium hypochlorite (NaOCl) solution followed by incubation in excysting fluid (EF). After pretreatment with NaOCl, sporocysts were washed 4 times in Hanks' balanced salt solution and then incubated in various EF (pH 7.4) at 38.5 C in 5% CO2-95% air. Maximum rates of excystation (free sporozoites/(sporozoites in sporocysts + free sporozoites) X 100) for all 3 species of Sarcocystis occurred at 4 hr after incubation in EF. These rates were 17% for S. capracanis after incubation in EF containing 2% trypsin + 10% caprine bile; 90% for S. cruzi in 2% trypsin + 10% bovine bile; and 20% for S. tenella in 2% trypsin + 10% caprine bile. Only a 40% excystation rate occurred in sporocysts of S. cruzi that had been stored previously for 14 days in aqueous potassium dichromate. Excysted sporozoites of S. capracanis, S. cruzi, and S. tenella penetrated and developed to mature meronts in bovine pulmonary artery endothelial cells or bovine monocytes.  相似文献   

9.
Whereas excystation of sporozoites from oocysts of most coccidian species requires exposure to reducing conditions followed by pancreatic enzymes and bile salts, sporozoites of a bovine isolate of a bovine isolate of Cryptosporidium excysted without exposure to either reducing conditions or to pancreatic enzymes and bile salts. Without prior exposure to reducing conditions, a high percent excysted after incubation in a mixture of trypsin and bile salts in Ringer's solution; fewer excysted after incubation in tap water, even fewer after incubation in salt solutions, and none after incubation in saliva. Excystation, generally greater at pH 7.6 than at pH 6.0 and at 37 degrees C than at 20 degrees C, was observed as early as 1 h after incubation in water or the trypsin-bile mixture. These findings provide circumstantial evidence that oocysts of Cryptosporidium can excyst in extraintestinal sites and liberate sporozoites that can initiate autoinfection.  相似文献   

10.
SYNOPSIS. The excystation of sporozoites from intact Toxoplasma gondii oocysts or mechanically released sporocysts was studied by light and electron microscopy. Both intact oocysts and free sporocysts excysted in 5% bovine bile in 0.9% NaCl solution after 30–60 min incubation at 37 C. Sporozoites were first activated in either intact sporocysts or oocysts within 2–12 min of incubation in bile. Sporozoites escaped from sporocysts through 4 plate-like sutures in the sporocyst wall, and from the oocyst as the oocyst wall ruptured at one or more points.  相似文献   

11.
In vitro excystation of Cryptosporidium baileyi from chickens   总被引:1,自引:0,他引:1  
Release of sporozoites from the oocysts of Cryptosporidium baileyi is described from Nomarski interference-contrast microscopy. Just prior to excystation, the four sporozoites became motile and rearranged themselves within the oocyst. The sporozoites were then rapidly expelled through an opening that formed in the oocyst wall, and the residuum was either released or retained within the oocyst. Excysted sporozoites were crescent shaped and measured 5.0-9.0 microns X 1.0-1.6 micron (mean = 6.8 X 1.1 microns). Excystation occurred when sodium taurocholate or a mixture of trypsin and sodium taurocholate was present in the incubation medium. High levels of excystation occurred at 37 degrees or 40 degrees C, but excystation did not occur at 4 degrees C. The ability of biles from two avian and two mammalian hosts to produce excystation of C. baileyi was also studied. After a 2-h incubation at 40 degrees C, the percentages of excystation were 69.5% in goat bile, 45.0% in pig bile, 33.0% in chicken bile, and 34.5% in turkey bile.  相似文献   

12.
Abstract A variety of techniques have been used to infect cell monolayers in culture with the protozoan, Cryptosporidium parvum . However, most of these methods rely on the use of trypsin and/or bile salts to excyst sporozoites in vitro, followed by washing sporozoites free of excystation solution prior to their addition to subconfluent monolayers. This method not only increases the amount of time required to establish infections in vitro, but also results in prolonged exposure of free sporozoites to environmental conditions. Here we report a simple, fast, and efficient method of obtaining consistent infections of C. parvum in cell monolayers. This technique relies on the ability of the parasite to excyst at 37°C but not at room temperature following pretreatment with sodium hypochlorite. By adding surface-sterilized oocysts directly to monolayers, sporozoites have access to host cells immediately upon excystation.  相似文献   

13.
Complete development of Eimeria tenella in Japanese quail embryos was observed. Sporozoites were inoculated into the allantoic cavity of 7-day-old Japanese quail embryos (Coturnix coturnix japonica), after which the infected embryos were incubated at 41 C. In the chorioallantoic membrane mature first generation schizonts, mature second generation schizonts, and gametes were detected at 48 hr postinoculation of sporozoites (PI), 84 hr PI, and 126 hr PI, respectively. Mature gametes and zygotes were found at 132 hr PI, and oocysts were detected at 138 hr PI. Mortality of embryos increased with increment of inoculum size of sporozoites. LD50 was 1.7 x 10(2) sporozoites. Oocyst production was also dependent on inoculum size. Oocysts harvested from embryos sporulated. The oocysts were inoculated into 13-day-old chickens, and oocysts, capable of sporulating normally, were recovered from ceca 7 days after inoculation.  相似文献   

14.
SYNOPSIS. Using intervals up to 5 hours, attempts to excyst sporozoites of Eimeria acervulina from intact oocysts in vitro were unsuccessful.
Examination of crop, gizzard, and intestinal contents of chicks fed large numbers of sporulated oocysts indicated that (1) no obvious change in the oocysts occurred in the crop, (2) a high percentage of the sporocysts were quickly released from the oocysts in the gizzard, (3) the sporozoites escaped from the liberated sporocysts in the duodenum and jejunum, and (4) the action of the digestive juice was apparently on the sporocysts rather than on the oocysts.
In vitro attempts to excyst sporozoites from free sporocysts with various pancreatic preparations in the absence of bile produced low or insignificant percentages of excystation. In the presence of bile, bile salts, and other surface-active agents, the action of the pancreatic preparations was greatly increased. The heaviest suspension of motile, nonaggregating sporozoites was obtained with 0.25% trypsin 1–300 in 5% chicken bile at pH 7.6.  相似文献   

15.
The present work deals with optimization of excystation of Cryptosporidium parvum oocysts and the infection process of tissue culture cells by the parasite. It was shown that presence of the bile salt sodium taurocholate in the incubation medium expedited excystation of the tested GCH1 isolate and enhanced it, as compared with bleaching of the oocysts. This bile salt had no effect on the viability of tissue culture cell lines MDBK and HCT-8 at the tested concentration of 0.375% for up to 2 hr of coincubation. Infection studies conducted on tissue culture cells showed higher infection rates in the presence of sodium taurocholate than with bleached oocysts in the absence of this bile salt. It may be concluded that, at least as regards the GCH1 strain of C. parvum, the whole infection process can be performed in the presence of sodium taurocholate, and does not require separation and cleaning of the excysted sporozoites before their application to tissue culture cells.  相似文献   

16.
In the present study, several stimuli were tested to liberate Toxoplasma gondii sporozoites from oocysts. Incubation in Na(2)CO(3)-CO(2) buffer at 40 degrees C with ultrasound, followed by incubation at 40 degrees C with bile or deoxycholic acid, was the only method that resulted in 95% liberation of motile infective sporozoites. A protocol of reproducibly high efficiency is provided, that compares favorably with any of the methods previously published.  相似文献   

17.
SYNOPSIS. Examination of the crop, gizzard, and intestinal contents of chickens fed suspensions of either Eimeria acervulina or E. tenella oocysts and turkeys fed either E. meleagrimitis or E. gallopavonis oocysts indicated that, in all 4 species, (1) oocysts apparently remained unchanged while in the crop, (2) sporocysts were liberated from oocysts while the latter were passing through the gizzard, (3) sporozoites were activated and escaped from liberated sporocysts after they had reached the small intestine, and (4) sporozoites within intact oocysts in the crop, gizzard, and intestines were not activated.
In vitro , trypsin 1–300 alone caused a small percentage of sporozoites to excyst from mechanically liberated sporocysts. The percentage of excystation increased greatly when trypsin was added to sodium taurocholate and increased even more when it was combined with chicken or turkey bile.
The two duodenal species ( E. acervulina and E. meleagrimitis ) differed both in vivo and in vitro from the two cecal species ( E. tenella and E. gallopavonis ). The duodenal species excysted in less time and farther anteriorly in the small intestine than did the cecal species. In addition, sporozoites of the two cecal species survived much longer in media containing trypsin plus bile or sodium taurccholate than did those of the two duodenal species.  相似文献   

18.
L-phenylalanine mustard (L-PAM) was incubated at 37° C in bile of bovine, canine and human origin. Recovery rate constants of L-PAM from bile were 0.1/hr for canine bile (0–3 hours); 0.18/hr for bovine bile; 0.45/hr for human bile. No significant hydrolysis of L-PAM in canine bile was noted for the period of 3 to 6 hours at 37° C. The incubation of L-PAM in sodium taurocholate solution (1000 molar excess) gave a recovery rate constant 0.15/hr at 37° C. However, the incubation of L-PAM in bilirubin solution (2.5 mg/ml H2O) gave a recovery rate constant of 0.52/hr at 37° C. The high concentration of the parent compound L-PAM seen in vivo in canine bile after i.v. administration may be related to its low in vitro degradation rate in canine bile.  相似文献   

19.
Leighton tubes containing monolayers of human embryonic lung cells were inoculated with 70,000 or 30,000 sporozoites of the viperid coccidium Caryospora simplex and examined at 1, 2, 4, 6, 8, 10, 12, 14, 16, and 18 days post-inoculation (PI). By day 1 PI, sporozoites had penetrated cells and were within parasitophorous vacuoles. Most sporozoites became spherical and then underwent karyokinesis several times between days 2 and 6 PI. Mature Type I meronts were found on days 6–16 PI and contained 8 to 22 short, stout merozoites. Mature Type II meronts were present on days 10–18 PI and contained 8 to 22 long, slender merozoites. Developing gamonts (undifferentiated sexual stages) were observed on days 14 and 16 PI. Mature micro- and macrogametes and thin-walled unsporulated oocysts were present on days 16 and 18 PI. Attempts to sporulate oocysts in tissue culture medium or in a 2.5% (w/v) aqueous solution of K2Cr2O7 at 25/°C and 37°C were unsuccessful; only a few oocysts developed to the contracted sporont stage. Four Swiss-Webster mice injected intraperitoneally with merozoites obtained from Leighton tubes on day 10 PI did not acquire infections. This is the second coccidium reported to complete its entire development, from sporozoite to oocyst, in cell culture.  相似文献   

20.
SYNOPSIS. Sporogony of oocysts of Isospora rivolta from the dog was studied by observation of individual oocysts in hanging drop preparations. Oocysts were passed with the feces in the unsporulated sporont stage. Division of the sporont gave rise to 2 spherical sporoblasts. Each sporoblast elongated and developed into a transient double pyramid stage. This stage changed into the sporocyst, which then differentiated into the sporulated oocyst. Sporulation time was determined for 4 temperatures. At 20 C, 100% of the sporulating oocysts (Sz 100) had formed sporozoites by 48 hr. At 25 C, Sz 100 was 24 hr, at 30 C it was 16 hr, and at 38 C 8 hr. The percentages of sporulation at 20, 25, 30, and 38 C were 94, 97, 96, and 93, respectively. Oocysts incubated at 50 C for 4 hr did not develop or survive, since they failed to sporulate when reincubated at 30 C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号