首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of the ovule, megaspore and megagametophyte in Saxifraga fortunei var. partita (Makino) Nakai was observed. The ovule is anatropous, bitegmic, and crassinucellate. Both integuments originate from the epidermis. The archesporium is considered to be multicellular. The primary sporogenous cell functions as the megaspore mother cell which forms a T-shaped tetrad. The chalazal member of the megaspore tetrad is functional and develops into a Polygonum-type embryo sac. In the pyriform synergids the filiform apparatus is observed, but any hook or indentations could not be recognized. The antipodal cells are detectable until the Helobial endosperm undergoes several nuclear divisions. Secondary multiplication of the nuclei or the cells of the antipodals could not be observed.  相似文献   

2.
 The processes of megasporogenesis and early megagametogenesis were cytologically investigated in Cupressus sempervirens L. in order to elucidate, at the cellular level, the origin of the megagametophyte. After pollination, sporogenous tissue developed in the chalazal region of the nucellus, but only one megaspore mother cell differentiated and divided meiotically without cell-wall formation. This led to the development of a cell with four nuclei which directly functioned as a megaspore. The C. sempervirens megagametophyte is thus tetrasporic, in contrast to the majority of conifers where the megagametophyte is monosporic. The consequenses of this observation are discussed from a genetics point of view. Received: 15 August 1997 / Accepted: 19 September 1997  相似文献   

3.
A study of ovule and megagametophyte development in field- and greenhouse-grown plants of Glycine max (L.) Merrill and Phaseolus aureus Roxb. reveals several consistent features for both species. These features include: a multiple archesporium, enlargement of a primary sporogenous cell directly into a megasporocyte, production of unequal dyad cells, a functional chalazal megaspore, Polygonum-type development, and a hypostase. A filiform apparatus was not observed in either species. Several marked differences in development also occur. Phaseolus usually produces one sporogenous cell per ovule; Glycine produces 2–3 sporogenous cells per ovule. Meiosis II is synchronous in Phaseolus but nonsynchronous in Glycine. Linear tetrads are produced in Phaseolus, whereas linear and T-shaped tetrads are found in Glycine. Starch grains accumulate in the mature megagametophyte of Glycine but are absent at that stage in Phaseolus. The usefulness of the modified clearing fluid, benzyl benzoate-4½, for the study of ovule and megagametophyte development in Glycine max and Phaseolus aureus is here demonstrated. In addition, the study indicates for both species that megagametophyte development in plants grown under field conditions is markedly similar to development in plants grown in the more uniform conditions of the greenhouse. Accordingly, these findings suggest generally that embryological data collected from plants grown under greenhouse conditions will reflect those from plants found in nature.  相似文献   

4.
Abstract

The anthers are tetrasporangiate. The anther wall comprises epidermis, fibrous endothecium, middle layer and tapetal layer. The tapetum is of the Glandular type and its cells remain uninucleate. Meiosis in pollen mother cells is normal and simultaneous cytokinesis leads to the formation of tetrahedral and decussate microspore tetrads. The pollen grains are shed at 2-celled stage. The ovule is campylotropous, bitegmic and crassinucellate. Meiosis in megaspore mother cell results in the formation of linear or occasionally T-shaped megaspore tetrad. The chalazal megaspore develops into Monosporic Polygonum type of embryo sac. Endosperm development is of the Nuclear type.  相似文献   

5.
Browne , Edward T., Jr . (U. of Kentucky, Lexington.) Morphological studies in Aletris. I. Development of the ovule, megaspores and megagametophyte of A. aurea and their connection with the systematics of the genus. Amer. Jour. Bot. 48(2): 143–147. Illus. 1961.—Development in a North American species of this variously classified genus has shown great similarity with the development in several genera of Hutchinson's Liliaceae-Narthecieae: Pleea, Tofieldia, Nanhecium and ∗∗∗Metaparthecium. The ovules are anatropous, bitegmic, crassinucellate and arranged in 4 rows in each locule of the tricarpellate pistil. There is a hypostase and an obturator. The primary archesporial cell is hypodermal. This undergoes a division to form a wall cell and the megaspore parent cell (MPC). The megaspores usually have a linear arrangement although occasionally a T-shaped tetrad may be formed. Most frequently the chalazal megaspore functions, but rarely the one adjacent to it may enlarge instead. Megagametophyte development is of the Polygonum type. A characteristic narrowed chalazal constriction is formed during the development of the megagametophyte. It is recommended on the basis of this information that Aletris be classified with the genera of the Liliaceae-Narthecieae.  相似文献   

6.
Megasporogenesis and megagametogenesis of Passiflora caerulea L. were studied using light and transmission electron microscopy. The archesporial tissue is generally formed by one cell. The megaspore mother cell gives rise to a linear tetrad of megaspores. The chalazal megaspore is the functional one, and originates a Polygonum -type female gametophyte. The antipodals are ephemeral. Abundant starch is found in the nucellar cells, specially the ones adjacent to the megagametophyte. The two synergids show ultrastructural differences, involving the filiform apparatus, the nucleolus and the endoplasmic reticulum; these differences suggest a functional differentiation, probably related to the reception of the pollen tube. This is the first report in angiosperms of substantial morphological differences between the two synergids.  © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society , 2003, 142 , 73–81.  相似文献   

7.
高山红景天胚胎学研究   总被引:8,自引:4,他引:4  
张萍  申家恒 《植物研究》1998,18(1):38-45
高山红景天(Rhodiola sachalinensis A.Bor.)具8个雄蕊,每个雄蕊有4个花粉囊。小孢子母细胞减数分裂时,胞质分裂为同时型。形成的四分体为四面体形。花药壁由表皮、药室内壁、二层中层和绒毡层五层细胞组成,其发育方式为基本型。腺质型绒毡层,有些绒毡层细胞分裂形成不规则双层,少数细胞双核。二细胞型花粉。雌蕊由4心皮组成。边缘胎座,倒生胚珠,双珠被,厚珠心,胚珠发育中形成珠心喙。大孢子四分体线形或T -形,合点大孢子具功能。胚囊发育为蓼型。成熟胚囊中,卵细胞核、助细胞核均位于细胞的合点端,珠孔端具液泡;极核融合为次生核,并位于卵细胞合点端附近; 3个反足细胞退化。双受精属于有丝分裂前配子融合类型。胚的发育为石竹型;基细胞侵入珠孔端,形成囊状吸器。细胞型胚乳;初生胚乳核分裂形成两个细胞,其珠孔端的细胞发育成胚乳本体,合点端的细胞直接发育成具一单核的合点吸器。  相似文献   

8.
为弄清罗汉果(Siraitia grosvenorii)大孢子发生、雌配子体发育过程与花部形态特征、胚珠的关系,运用石蜡切片法对罗汉果子房进行了显微观察。结果表明,罗汉果的胚珠倒生,双珠被,厚珠心,大孢子四分体呈线型排列,合点端一个大孢子分化为功能大孢子,成熟胚囊为蓼型。花蕾形态、胚珠变化与大孢子发生、雌配子体的发育时期具有一定相关性,当子房长度为7.0 mm≤L<9.0 mm,珠心呈椭圆形时,约有45.83%的大孢子母细胞处于减数分裂时期。因此,依据罗汉果花部形态可有效确定大孢子发生与雌配子体发育的时期。  相似文献   

9.
To aid in understanding of the early events in seed development, surface topography observations with the scanning electron microscope can be coupled with new methods of clearing tissues for light microscopy study. These techniques reveal that two to four ovules begin development along the placental ridge as conduplication of the carpel proceeds in Trifolium repens L. A multicellular archesporium may develop giving rise to several sporogenous cells and ultimately to more than one megasporocyte. However, meiosis is completed in only one megasporocyte to give rise to a single linear tetrad of megaspores. The chalazal megaspore functions in megagametogenesis. Megasporogenesis and megagametogenesis progress as ovule ontogeny proceeds. The outer integument develops more rapidly than the inner and contributes to the final form of the campylotropous ovule. The most dramatic change in ovule form occurs as the tetrad develops and the functional spore enlarges and divides mitotically to produce the two-nucleate megagametophyte. It can be demonstrated that this early gametophyte develops faster than it is allowed to expand in the nucellar mass. This may in part explain why there is gametophyte failure and reduced seed set in clovers.  相似文献   

10.
用常规石蜡制片对黄顶菊(Flaveria bidentis(L.) Kuntze)大孢子发生、雌配子体和胚胎的发育过程进行了观察.黄顶菊雌蕊柱头二裂,2心皮,1室,单胚珠,基生胎座,单珠被,薄珠心,倒生胚珠,具发达的珠被绒毡层.珠心表皮下分化出孢原细胞,孢原细胞直接发育为大孢子母细胞,大孢子母细胞减数分裂形成直列四分体...  相似文献   

11.
PALSER, B. F., PHILIPSON, W. R. & PHILIPSON, M. N., 1989. Development of ovule, megagametophyte and early endosperm in Rhododendron L. (Ericaceae). Complete development of ovule, megagametophyte and early endosperm is compared for 15 species (almost complete for four additional species) representing all subgenera and most sections of Rhododendron. In all the ovule is anatropous, unitegmic, tenuinucellate with the lateral and micropylar nucellus disintegrating completely. The integument has a tanniniferous epidermis, starch around egg apparatus and micropyle, an endothelium and hypostase. Differences occur in time of closure of the micropyle and its final length, total proportion of ovule occupied by gametophyte and by formation of ovule tails only in section Vireya. Megagametophyte development follows the Polygonum pattern in all species. A single archesporial cell becomes the megaspore mother cell directly, and the chalazal spore of a linear tetrad functions. Between the eight-nucleate stage and maturity the micropylar end of the gametophyte elongates into the micropyle. Starch is characteristically present in the mature central cell. The pollen tube penetrates porogamously and double fertilization is rapid. Endosperm development starts promptly and is cellular, first forming a linear row of four cells. The zygote elongates slightly but does not divide during the stages followed. Differences may occur in time of enlargement, orientation of some mitoses, some cellular characteristics, amount of starch present and final size of megagametophyte. Rare abnormalities occur.  相似文献   

12.
大叶补血草的大、小孢子发生与雌、雄配子体的发育   总被引:1,自引:0,他引:1  
周玲玲  李伟  刘萍 《植物研究》2007,27(4):402-407
系统地报道了大叶补血草(Limonium gmelinii (Willd.) Kuntze)的大、小孢子发生和雌、雄配子体的形成发育过程。主要结果如下:(1)小孢子母细胞减数分裂过程中的胞质分裂为同时型,四分孢子多为正四面体形, 也有少数为左右对称形;(2)成熟花粉为三细胞型,具3个萌发孔;(3)花药壁由5层细胞组成,最外层为表皮,其内分别为药室内壁、中层、绒毡层,绒毡层为变形型,花药壁的发育属于基本型;(4)大叶补血草的雌蕊由5心皮合生,子房1室,基生胎座,胚珠1个,拳卷型,双珠被,厚珠心;(5)孢原细胞发生于珠心表皮下,经一次平周分裂,形成造孢细胞,由造孢细胞直接发育成大孢子母细胞,大孢子母细胞减数分裂形成4个大孢子呈直线排列,合点端大孢子具功能,属于典型的蓼型胚囊发育。  相似文献   

13.
This paper reports the studies of overall embryology of Glycyrrhiza uralensis Fisch. Development of the anther wall follows the dicotyledonous type. The cytokinesis of the microspore mother cell in meiosis is of simultaneous type. The arrangement of microspores in tetrad is tetrahedral, isobilateral and decussate. Microspores have various types of abortive to development. Mature pollen grain is of the 2-celled type. The ovule is bitegminous, crassinucellate and campylotropous. The megaspore mother cell gives rise to unequal dyad and then linear tetrad. The chalazal megaspore, the second or the third megaspore towards the micropylar end are functional megaspore. The development of the embryo sac conforms to the Polygonum type. Mature embryo sac has various types of variation. The fertilization belongs to the premitotic type of syngamy. The development of most embryoes belongs to the Onagrad type. The development of the endosperm belongs to the nuclear type and the endosperm near the chalazal end develops into haustorium.  相似文献   

14.
15.
孝顺竹(Bambusa multiplex)大孢子发生与雌配子体发育研究   总被引:2,自引:0,他引:2  
为了解孝顺竹(Bambusa multiplex)的大孢子及雌配子体的发育过程,利用扫描电镜对孝顺竹的雌蕊形态以及大孢子和雌配子体的发育进行了观察。结果表明,孝顺竹雌蕊单子房,1室,双珠被,薄珠心;大孢子母细胞是由1个雌性孢原细胞直接发育而成,大孢子四分体为线性,位于珠孔端的1个大孢子分化成为功能大孢子,然后由功能大孢子依次经历二核、四核、最终形成1卵细胞2助细胞2极核3反足细胞的成熟胚囊。此外,孝顺竹为雌雄同熟类型,根据雌、雄蕊发育的对应关系,从雄蕊形态可估测雌配子体发育阶段。有少数雌蕊出现败育现象,可能是孝顺竹结实率低的原因之一。  相似文献   

16.
Calypso bulbosa is a terrestrial orchid that grows in north temperate regions. Like many orchids, the Calypso has ovules that are not fully developed at anthesis. After pollination, the ovule primordia divide several times to produce a nucellar filament which consists of five to six cells. The subterminal cell of the nucellar filament enlarges to become the archesporial cell. Through further enlargement and elongation, the archesporial cell becomes the megasporocyte. An unequal dyad results from the first meiotic division. A triad of one active chalazal megaspore and two inactive micropylar megaspores are the end products of meiotic division. Callose is present in the cell wall of the megaspore destined to degenerate. In the mature embryo sac the number of nuclei is reduced to six when the chalazal nuclei fail to divide after the first mitotic division. The chalazal nuclei join the polar nucleus and the male nucleus near the center of the embryo sac subsequent to fertilization.  相似文献   

17.
The embryology ofCrocus thomasii is described. Male meiosis is of simultaneous type, and gives rise to starchy microspores which develop into lipoid pollen grains; these are two-celled and show a spinulate acolpate, abaculate exine lacking apertures. The tapetum is glandular and its cells become bi- or sometimes multinucleate. The ovule is anatropous and bitegmic; the inner integument forms the micropyle. Megasporogenesis is heteropolar with starch accumulation in the functional chalazal megaspore. Embryo sac development conforms to thePolygonum type. The endosperm development is nuclear. The embryo develops according to the Caryophyllad type. In the ripe seed it is differentiated and enveloped by a starchy cellular endosperm. The embryological characters observed strongly favour a close relation betweenC. thomasii andC. sativus.  相似文献   

18.
The immature megaspore mother cell of Ginkgo biloba is essentially spherical and is surrounded by a thick, complex wall. A large nucleus occupies the central region of the cell, and the organelles appear to be randomly arranged in the cytoplasm. With approaching maturity and the onset of meiosis, the cell elongates in the direction of the ovular axis. An extensive system of ER develops at the micropylar pole of the cell during elongation, and the plastids and mitochondria migrate to the opposite or chalazal pole. The micropylar end of the mature megaspore mother cell is usually devoid of plastids and mitochondria, but these organelles are densely packed in the chalazal end of the cell below the nucleus. The dictyosomes and dense spherosome-like bodies do not show such polarity in their distribution. At meiosis I plastids and mitochondria are, as a rule, restricted to the chalazal dyad cell that is destined to produce the functional megaspore. The wall of the megaspore mother cell consists of a middle lamella which is irregularly thickened, an outer wall layer resembling the walls of the surrounding nutritive cells, and an inner layer resembling the middle lamella in appearance.  相似文献   

19.
利用常规石蜡制片技术、荧光显微技术、光镜细胞化学技术、电子显微镜技术对青阳参大孢子发生、雌配子体形成过程进行了详细观察。结果显示,青阳参为边缘胎座,胚珠倒生、短珠柄,单珠被,薄珠心型,珠心细胞含有大量的淀粉粒、线粒体和内质网等;大孢子孢原细胞起源于下表皮并直接行使大孢子母细胞的功能;合点端的大孢子分裂形成8-核胚囊;蓼型胚囊;成熟胚囊中有大量淀粉粒;珠孔受精;胚乳在早期发育阶段以游离核形式存在,约在16~32核的阶段细胞壁形成,通常情况下胚乳核的分裂比合子的分裂早,成熟胚乳细胞单核、形状不规则,没有胚乳吸器;胚的发育经过原胚、球型胚和心型胚阶段,茄型;成熟的种子具有种毛,位于珠孔端的珠被表皮细胞是种毛长出的区域,种子中含有大量的脂肪。  相似文献   

20.
PALSER, B. F., PHILIPSON, W. R. & PHILIPSON, M. N., 1991. Characteristics of ovary, ovule and mature megagametophyte in Rhododendron L. (Ericaceae) and their taxonomic significance. The ovary, ovule and megagametophyte at the time the latter is mature are described for 177 species representing all subgenera, sections and most subsections recognized in Rhododendron. All three, but particularly the ovary, vary considerably. The ovary is compared among species as to size; shape of apex–tapered vs. depressed; relative dimensions; indumentum–five basic hair types; wall structure including crystal distribution and frequency, stomata, cuticular ornamentation; locule number, shape and size relative to radius; wall thickness relative to radius; placenta size, shape, depth of cleft, level of cleft junction, presence or not of a decurrent placental stalk ridge; number of ovules, their arrangement and orientation on placenta; and presence and distribution of internal stomata and hairs. The nectary which girdles the base of the ovary also varies in size, shape, indumentum, stomata and some internal features. The ovule is anatropous, unitegmic and tenuinucellate with the lateral and micropylar nucellus disappearing completely and the megagametophyte elongating into the micropyle in all species. Also common to almost all are an endothelium, hypostase, differentiated epidermis–most often tanniniferous, and starch in integument around egg apparatus and micropyle. There are differences in size, shape, proportion occupied by gametophyte and micropyle, thickness of integument, degree of differentiation of some features, amount and area of starch and occurrence of chalazal and micropylar tails or of incipient micropylar and/or chalazal appendages. The megagametophyte, which develops according to the Polygonum pattern, has two distinct portions, the chalazal bounded by the endothelium with small antipodal cells at its end and the usually broader micropylar part within the micropyle containing a rather large egg apparatus with distinctive synergids; starch is present in the central cell and the polar nuclei are most often fused. Differences occur in proportions of the parts to one another, amount of starch, etc. Sixty-three characters were entered onto a computer, clustered by two different techniques and dendrograms constructed. Personal analysis and both dendrograms show section Vireya to be characterized by a syndrome of distinctive features and clearly separated from the rest of the genus. Subgenus Hymenanthes also has its particular syndrome but is somewhat less distinct from the remainder of the genus. Even less distinct but still grouped together are species of section Choniasirum and of section Sciadorhodion. Many species of section Rhododendron and of subgenus Tsutsusi tend to cluster together but section Rhododendron and most sections of the azalea complex are more generalized and moderate in the ovary, ovule and megagametophyte characters and do not separate sharply from one another.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号