首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Subject of this paper is the transport noise in discrete systems. The transport systems are given by a number (n) of binding sites separated by energy barriers. These binding sites may be in contact with constant outer reservoirs. The state of the system is characterized by the occupation numbers of particles (current carriers) at these binding sites. The change in time of the occupation numbers is generated by individual “jumps” of particles over the energy barriers, building up the flux matter (for charged particles: the electric current). In the limit n → ∞ continuum processes as e.g. usual diffusion are included in the transport model. The fluctuations in occupation numbers and other quantities linearly coupled to the occupation numbers may be treated with the usual master equation approach. The treatment of the fluctuations in fluxes (current) makes necessary a different theoretical approach which is presented in this paper under the assumption of vanishing interactions between the particles. This approach may be applied to a number of different transport systems in biology and physics (ion transport through porous channels in membranes, carrier mediated ion transport through membranes, jump diffusion e.g. in superionic conductors). As in the master equation approach the calculation of correlations and noise spectra may be reduced to the solution of the macroscopic equations for the occupation numbers. This result may be regarded as a generalization to non-equilibrium current fluctuations of the usual Nyquist theorem relating the current (voltage) noise spectrum in thermal equilibrium to the macroscopic frequency dependent admittance.The validity of the general approach is demonstrated by the calculation of the autocorrelation function and spectrum of current noise for a number of special examples (e.g, pores in membrances, carrier mediated ion transport).  相似文献   

2.
The leech photoreceptor forms a unicellular epithelium: every cell surrounds an extracellular “vacuole” that is connected to the remaining extracellular space via narrow clefts containing pleated septate junctions. We analyzed the complete structural layout of all septa within the junctional complex in elastic brightfield stereo electron micrographs of semithin serial sections from photoreceptors infiltrated with colloidal lanthanum. The septa form tortuous interseptal corridors that are spatially continuous, and open ended basally and apically. Individual septa seem to be impermeable to lanthanum; interseptal corridors form the only diffusional pathway for this ion. The junctions form no diffusion barrier for the electron-dense tracer Ba2+, but they hinder the diffusion of various hydrophilic fluorescent dyes as demonstrated by confocal laser scanning microscopy (CLSM) of live cells. Even those dyes that penetrate gap junctions do not diffuse beyond the septate junctions. The aqueous diffusion pathway within the septal corridors is, therefore, less permeable than the gap-junctional pore. Our morphological results combined with published electrophysiological data suggest that the septa themselves are not completely tight for small physiologically relevant ions. We also examined, by CLSM, whether the septate junctions create a permeability barrier for the lateral diffusion of fluorescent lipophilic dyes incorporated into the peripheral membrane domain. AFC16, claimed to remain in the outer membrane leaflet, does not diffuse beyond the junctional region, whereas DiIC16, claimed to flip-flop, does. Thus, pleated septate junctions, like vertebrate tight junctions, contribute to the maintenance of cell polarity.  相似文献   

3.
Electron transport from untreated to mersalyzed microsomal vesicles at the level of NADH-cytochrome b5 reductase or cytochrome b5 has been demonstrated in the absence of added water-soluble electron carriers. A similar effect was shown in the systems “intact mitochondria — mersalyzed microsomes” and “mersalyzed mitochondria— untreated microsomes”. No measurable electron transport between intact and mersalyzed particles of inner mitochondrial membrane was found. The obtained data suggest that the capability to carry out intermembrane electron transfer is specific for NADH-cytochrome b5 reductase and/or cytochrome b5, localized in microsomal and outer mitochondrial membranes.  相似文献   

4.
The attraction of fern spermatozoids by secretions from the female reproductive structures, and by salts of malic acid, has long been known as a classic example of precise chemotactic orientation by motile cells. Spermatozoids of the bracken fern are attracted by the partially ionized form of malic acid, bimalate ion, and also by calcium ions. Both calcium and bimalate ions must be present for chemotactic response and for response to voltage gradients, Spermatozoids swimming up a bimalate concentration gradient swim in helical paths of abnormally small radius; if they accidentally swim down the concentration gradient the radii of their path helices become abnormally large. These observations suggest that changes in the direction of flagellar beating in response to the rate of change of bimalate ion concentration with time may be the basis for chemotactic orientation. A “coupled diffusion” hypothesis for chemo-reception is presented, which postulates a membrane carrier which can only circulate freely in the membrane if it binds both bimalate and calcium ions. This hypothesis could explain time-differentiation of the stimulus, the coupling of a specific stimulus — bimalate ions — to a general mediator of intracellular response — calcium ions — and the quantitative relationship between response of the spermatozoids and the chemical potential of “calcium bimalate.”  相似文献   

5.
Macrocyclic molecules can serve as ion carriers when their polar groups form an inner cage to capture ions while their hydrophobic groups form an outer layer to dissolve the molecule in lipid membranes. A “template method” has been developed for high-yield synthesis of a whole variety of macrocyclic esters, amides, and other families which may show ionophoric properties. In order to select the more promising compounds for synthesis, energetic and conformational characteristics of such molecules have been calculated from empirical energy functions. Calculations are examined using known structures and are employed to predict the properties of molecules not yet synthesized.  相似文献   

6.
The genesis of wheat microsporial polyembryoids in vitro was analyzed in detail. The nature of different phenotypes of cereal polymeric embryos was identified. They represent the class “multiple shoot meristems,” which results from a cleavage polyembryony and is accompanied by organ fasciations of all known types (radial, flat, or ring). The morphological nature of cereal embryonic organs has been clarified: shoot meristem—axial organ; scutellum—lateral outgrowth of this axis; coleoptile—derivative of shoot meristem but fused with scutellum; terminality of scutellum—the result of linear fasciation that occurred historically. An explanation is given on how the structural model of an auxin polar transport works during the establishment of bilateral symmetry in a cereal embryo that is associated with the inverted polarization of the carrier protein PIN1 on cell membranes and, correspondingly, with the inverted auxin transport performed by this carrier (Fischer-Iglesias et al., 2001; Forestan et al., 2010).  相似文献   

7.
M. C. Drew  L. R. Saker 《Planta》1984,160(6):500-507
The extent to which uptake and transport of either phosphate, potassium or chloride are controlled by the concentration of these ions within the root, perhaps through an allosteric mechanism, was investigated with young barley plants in nutrient solution culture. Plants were grown with their roots divided between two containers, such that a single seminal root was continuously supplied with all the required nutrient ions, while the remaining four or five seminal roots were either supplied with the same solution (controls) or, temporarily, a solution lacking a particular nutrient ion (nutrient-deficient treatment). Compared with controls, there was a marked stimulation of uptake and transport of labelled ions by the single root following 24 h or more of nutrient dificiency to the remainder of the root system. This stimulation, which comprised an increased transport to the shoot and, for all ions except Cl-, increased transport to the remainder of the root system, took place without appreciable change in the concentration of particular ions within the single root. However, nutrient deficiency quickly caused a lower concentration of ions in the shoot and the remaining roots. The results are discussed in relation to various mechanisms, proposed in the literature, by which the coordination of ion uptake and transport may be maintained within the plant. We suggest that under our conditions any putative allosteric control of uptake and transport by root cortical cells was masked by an alternative mechanism, in which ion influx appears to be regulated by ion efflux to the xylem, perhaps controlled by the concentration of particular ions recycled in the phloem to the root from the shoot.  相似文献   

8.
Scott , Tom K., and Winslow R. Briggs . (Stanford U., Stanford, Calif.) Auxin relationships in the Alaska pea (Pisum sativum). Amer. Jour. Bot. 47(6) : 492–499. Illus. 1960.—The distribution of “free” auxin in the 9-day-old ‘Alaska’ pea epicotyl was determined by short-term ether extraction and by the standard agar diffusion technique. The apical bud appeared to be the only source of “free” auxin. In the upper (growing) internode “free” auxin as determined by diffusion was found to decrease significantly from apex to base, while “free” auxin as determined by extraction remained constant. Below this region, both diffusible and extractable auxin remain constant through one internode and then both decrease simultaneously to the base of the plant. In the growing region, a fraction of diffusible auxin must move from the transport system but remain readily extractable. Upon removal of the apical auxin source all “free” auxin will ultimately be found in the transport system from which it gradually disappears basally.  相似文献   

9.
A general theory of the molecular structure of receptors for transmitters based only on protein has been presented elsewhere (Smythies, 1974a,b). The acetylcholine receptor at the neuromuscular junction is postulated in particular to be based on a Kusnetsov-Ghokov grid with four sequencestwo “primary” chains A-x-B-cys-A-x-B where A = arg or lys and B = glu or phosphoser and two “secondary” chains of sequence -gly-x-gly-pro-x-ile-cys-asp-x- forming a symmetrical receptor cup of rectangular form. The present paper extends the model to include the gate over the adjacent ionophore (or “ion conductance modulator”: ICM) and the linking mechanism from receptor to gate. These are postulated to consist of a second Kusnetsov-Ghokov grid generated by a third “primary” chain along the side that covers the orifice to the ion conducting channel. The action of ACh is postulated to be to displace an hydrated Ca++ ion from the receptor cup and to disrupt the AB rungs in the receptor grid. The middle primary chain then slides 14 Å and the AB links reform. This replaces a bulky amino acid pair normally blocking the ion channel by a less bulky amino acid pair and so hydrated ions can be transmitted. It is further postulated that snake neurotoxins (ACh blockers) in a specified conformation bind mainly to the ionophore grid and prevent the sliding filament mechanism from opening; whereas the snake “cardiotoxins” (ACh agonists)—in a specified conformation—bind to the same sliding filament mechanism in its “open” ionophore gate and prevent it being closed: and histrionicotoxin binds to the same open “gate” but blocks it physically. The hypothesis may rigorously be tested by experiment as it makes detailed predictions on the X-ray structure of the snake neurotoxins and cardiotoxins.  相似文献   

10.
Effect of chain length on the stability of lecithin bilayers   总被引:1,自引:0,他引:1  
The shift reagent NaCl3 was added to vesicles of synthetic, saturated (DiC10-C16) lecithins and egg lecithin and the accessibility of the N(CH3)3 groups to Na3+ ions was studied by NMR. Long chain lecithins, e.g. dipalmitoyl and egg lecithin form bilayers “stable” on the time scale of our experiments and practically impermeable to cations. Short chain lecithins on the other hand form short-lived vesicles surrounded by unstable bilayers which are not effective cation barriers. Ion transport across the latter lecithin bilayers may involve, besides passive diffusion, collision-induced transient rupture and resealing of bilayers coupled with ion movement.  相似文献   

11.
Interpretation of the dual isotherm for ion absorption in beet tissue   总被引:10,自引:7,他引:3       下载免费PDF全文
Beet discs aged in 0.5 mM CaSO4 develop a capacity to absorb K+ and Cl from solutions of low concentration. The initial influx of these ions is described by a hyperbolic relationship with concentration in the range 0.01 to 0.5 mM KCl, which is identical with the system 1 absorption isotherm found in other tissues. A second hyperbolic isotherm, attributable to system 2, is found at higher concentrations (1-50 mM KCl).

When the transport of labeled ion to the vacuole is studied by wash-exchanging the bulk of the cytoplasmic label following the absorption period, it is noted that in the range of system 1, isotope influx to the vacuole increases with time as the concentration of labeled ions in the cytoplasm increases, while in the range of system 2, influx to the vacuole is constant from the beginning. Diminution of the cytoplasmic specific activity during radio-isotope absorption by prefilling the cytoplasm with the analogous unlabeled salt, markedly reduces subsequent radioisotope uptake to the vacuole only in the range of system 1. These experiments suggest that the cytoplasm serves as a mixing chamber, and that the plasma membrane controls ion uptake to the tissue at low concentrations, indicating that the system 1 isotherm reflects ion movement into the cytoplasm through the plasma membrane. Flux experiments support this conclusion, showing that development with age of the system 1 isotherm corresponds to a quantitatively similar increase in plasma membrane influx in 0.2 mM KCl.

At higher concentrations the outer membrane no longer rate-limits entry of ions to the vacuole. Isotope influx under these conditions, described by the system 2 isotherm, presumably reflects movement across the tonoplast.

  相似文献   

12.
According to the classical model, the “shoot” consists only of the categories “caulome” (“stem” sensu lato) and “phyllome” (“leaf” sensu lato), (and “root” in cases of “adventitious” root formation). If lateral shoots are present, their position is axillary. Consequently, caulome as well as phyllome are inserted on the caulome and only on the caulome. This classical model of the shoot has two disadvantages of great consequence: (1) Intermediate organs cannot be accepted as such, but have to be interpreted (i.e. categorized) as either caulome or phyllome (or root) by distortion of the actual similarity. (2) Certain positional changes of organs cannot be accepted as such, but have to be “explained” by congenital fusion. The new conception of the shoot will have the advantages of the classical model but not its disadvantages. Hence, the shoot may consist of the following parts: (main and lateral) shoot, caulome, phyllome, root, emergence, and structures intermediate between (i.e. partially homologous to) any of the preceding. Thus, the five categories of the classical model, namely “shoot”, “caulome”, “phyllome”, “root” and “emergence” are no longer mutually exclusive; they may merge into each other due to an actual or potential continuum. Intermediate organs are therefore accepted as such; for example, an organ may be characterized as an intermediate form between a caulome and a phyllome. Besides intermediate forms, all changes in position are accepted as such. Hence, the following positional relations are possible: caulome and phyllome may be inserted on the caulome, caulome and phyllome may be inserted on the phyllome; roots may be inserted on caulome or phyllome; intermediate forms may be inserted on the caulome, phyllome, or other intermediate forms. Consequences of the new conception for morphological research are pointed out, especially for homologization, evolutionary considerations, and the direction in which research progresses.  相似文献   

13.
Three isomeric ceramide tetrasaccharides — P blood-group active globoside, lacto-N-neotetraosyl ceramide as ABH blood-group precursor, both isolated from human erythrocytes and “asiologanglioside” from human brain as reference standard — and two ceramide pentasaccharides — H blood-group active glycosphingolipid, obtained from blood-group B active ceramide hexasaccharide of human B erythrocytes after α-galactosidase treatment and ceramide pentasaccharide from rabbit erythrocytes with B-like blood-group activity — were investigated by mass spectrometry after permethylation. The carbohydrate moiety exhibits differences not only concerning the sugar sequence but also with regard to the position of some glycosidie linkages: Oligosaccharides containing N-acetylhexosamine substituted at position 4 produce spectra that are distinctly different from those containing C-3 substituted N-acetylhexosamines, thus allowing the differentiation between type 1 and type 2 carbohydrate chains. Moreover, oligosaccharide ions with a hexose at the cleavage site exhibit a fragmentation pattern different from those with a N-acetylhexosamine at the “reducing terminal”. The intensity ratio between parent ion and parent ion — 32 mass units is Q ? 3 in the first case, whereas in the latter case Q is <1. The Q-values are given for 14 oligosaccharide ions. Differences in the composition of the ceramide residues can also be deduced from the mass spectra.  相似文献   

14.
Ion transport in Nitellopsis obtusa   总被引:22,自引:0,他引:22  
The distribution and rates of exchange of the ions sodium, potassium, and chloride in single internodal cells of the ecorticate characean, Nitellopsis obtusa, have been studied. In tracer experiments three kinetic compartments were found, the outermost "free space" of the cell, a compartment we have called "protoplasmic non-free space", and the cell sap. The concentrations in the vacuole were 54 mM Na(+), 113 mM K(+), and 206 mM Cl(-). The steady state fluxes across the vacuolar membrane were 0.4 pmole Na(+)/cm.(2) sec., 0.25 pmole K(+)/cm.(2) sec., and 0.5 pmole Cl(-)/cm.(2) sec. The protoplasmic Na/K ratio is equal to that in the vacuole but protoplasmic chloride is relatively much lower. Osmotic considerations suggest a layer 4 to 6 micro thick with sodium and potassium concentrations close to those in the vacuole. The fluxes between protoplasm and external solution were of the order of 8 pmoles Na(+)/cm.(2) sec. and 4 pmoles K(+)/cm.(2) sec. We suggest that the protoplasm is separated from the cell wall by an outer protoplasmic membrane at which an outward sodium transport maintains the high K/Na ratio of the cell interior, and from the vacuole by the tonoplast at which an inward chloride transport maintains the high vacuolar chloride. The tonoplast appears to be the site of the principal diffusion resistance of the cell, but the outer protoplasmic membrane probably of the main part of the potential.  相似文献   

15.
The first application of a laser-temperature-jump apparatus for the study of ion transport through planar (artificial) lipid membranes is described. The relaxation of the electric current is detected, either continuously at a constant applied voltage or discontinuously by a series of short voltage pulses. The second technique, a combined voltage- and temperature-jump method, is especially appropriate to investigate the kinetics of the adsorption/desorption process of hydrophobic ions and neutral carriers of cations at the membrane interface and to separate this phenomenon from the diffusion process through the unstirred aqueous layers adjacent to the membrane. The aim is to determine the rate-limiting step of transport. The permeation rate of the hydrophobic anion 2,4,6-trinitrophenolate is limited by the inner membrane barrier. For tetraphenylberate the rate constant of translocation across the inner barrier and that of desorption from the membrane into water are found to be of comparable magnitude. The membrane permeability of the neutral macrocyclic ion carrier enniatin B is strongly interface limited by its comparatively small rate of desorption into water. These results show that the frequently used a priori assumption of partition equilibrium at the membrane interfaces during transport is not justified.  相似文献   

16.
《Autophagy》2013,9(2)
The current working definition of autophagy is the following: all processes in which intracellular material is degraded within the lysosome/vacuole and where the macromolecular constituents are recycled. There are several ways to classify the different types of autophagy. For example, we can separate autophagy into two primary types, based on the initial site of cargo sequestration. In particular, during microautophagy and chaperone-mediated autophagy, uptake occurs directly at the limiting membrane of the lysosome or vacuole. In contrast, macroautophagy—whether selective or nonselective—and endosomal microautophagy involve sequestration within an autophagosome or an omegasome, or late endosomes/multivesicular bodies, respectively; the key point being that in these types of autophagy the initial sequestration event does not occur at the limiting membrane of the degradative organelle. In any case, the cargo is ultimately delivered into the lysosome or vacuole lumen for subsequent degradation. Thus, I think most autophagy researchers view the degradative organelle as the ultimate destination of the pathway. Indeed, this fits with the general concept that organelles allow reactions to be compartmentalized. With regard to the lysosome or vacuole, this also confers a level of safety by keeping the lytic contents away from the remainder of the cell. If we are willing to slightly modify our definition of autophagy, with a focus on “degradation of a cell’s own components through the lysosomal/vacuolar machinery,” we can include a newly documented process, programmed nuclear destruction (PND).  相似文献   

17.
《Flora》2007,202(5):383-394
The paper reviews and discusses various interpretations of the shoot apex of Podostemaceae with special reference to subfamily Podostemoideae. Main questions concern (1) the proposed absence of a shoot apical meristem (SAM) in apical “meristemless” shoot tips of Podostemoideae and, as the consequence, the endogenous inception of leaf-borne leaves and branches and (2) the predicted stem bifurcation below a “terminal” dithecous (double-sheathed) leaf positioned instead of a shoot apex, as it is reported for subfamily Podostemoideae. Does the “meristemless” shoot apex represent a true evolutionary novelty? Does the view of stem bifurcation represent a new ramification pattern with the consequence that the “classical root–shoot model” of angiosperms is not valid for Podostemaceae? Both interpretations do not conform to previous studies that are complemented here by new data on the SAM of Zeylanidium olivaceum and Thelethylax minutiflora (Podostemoideae). Although a SAM is difficult to observe in the vegetative shoots of many Podostemoideae, it becomes well visible when the shoot passes into the flowering stage approaching the conspicuous shoot apex of floriferous shoots. The arguments of the absence of a SAM in vegetative shoots are not convincing and the endogenous origin of “leaf-borne leaves” appears questionable. Consequently, the “meristemless” shoot apex cannot be considered as a structure having evolved de novo. In the less advanced subfamilies Tristichoideae and Weddellinoideae, the leaf primordia develop only from a few apical cells of the outer shoot layer. This allows the conclusion that the surface layer of the apex in these subfamilies corresponds to the horizontally spread single-layered apical meristem of subfamily Podostemoideae. Similarly, the view of shoot bifurcation does not conform to the diachsial–sympodial branching pattern occurring in the cymose inflorescences of many Podostemoideae. This fact contradicts the presence of a terminal leaf.  相似文献   

18.
Codium decorticatum regulates its internal ionic composition and osmotic pressure in response to changes in external salinity. Over a salinity range of 23 to 37% (675 to 1120 mosmol/kg) Codium maintains a constant turgor pressure of 95 mosmol/kg (2.3 atm), observed as a constant difference between internal and external osmotic pressures. The changes in internal osmotic pressure are due to changes in intracellular inorganic ions. At 30 0/00 salinity the major intracellular ions are present in the following concentrations (mmol/kg cell H20): K+, 295; Na+, 255; Cl-, 450. At different salinities intracellular ion concentrations remain in constant proportion to the external ion concentrations, and thus the equilibrium potentials are approximately constant. The potential difference between the vacuole and seawater (-76 mV), whici is predominantly a K+ diffusion potential, is also constant with changing salinity. Comparison of the equilibrium potentials with the vacuole potential suggests that Cl- is actively absorbed and Na+ actively extruded, whereas K+ may be passively distributed between the vacuole and seawater. Turgor pressure does not change with environmental hydrostatic pressure, and increasing the external osmotic pressure with raffinose elicits a response similar to that obtained by increasing the salinity. These two results suggest that the stimulus for turgor regulation is a change in turgor pressure rather than a change in internal hydrostatic pressure or ion concentrations.  相似文献   

19.
Developmental anatomy of the sporophyte–gametophyte junction in six moss species is described with special reference to sporophyte penetration into the gametophytic tissue. The sporophyte–gametophyte junction in mosses is classified into two types based on vaginula morphology: in the “true vaginula” type, the junction involves only an epigonium derived from the archegonium, and in the other “shoot vaginula” type, it involves a shoot and an epigonium. In both of the types, the sporophyte penetrates into an epigonial tissue accompanied by degeneration of epigonium cells under the developing sporophyte. In the “shoot vaginula” type, the sporophyte further penetrates into the conducting strand or similar cells that seem to be induced by stimulation of fertilization. It is likely that the difference in growth rate between the epigonium and the capped sporophyte is a mechanical force for sporophyte penetration.  相似文献   

20.
《Biochemical education》1999,27(2):74-76
Students more easily master the concepts of oxidative phosphorylation after the exercise proposed here — the Electron Transport Game — is carried out in class. Students play the role of electron carriers in the electron transport chain. Each student wears a two-sided sign which identifies an electron carrier in its oxidized or reduced form. “Electrons” are styrofoam balls that are handed down the chain as the students flip their signs from oxidized to reduced. Important principles about the chain, including the mechanism of several well-known inhibitors, are discussed during the exercise which illustrates the concepts of electron transport in a manner that students can comprehend and retain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号