首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The submicroscopic structure of the starch grains of Zea maysand Triticum sativum was studied electron-optically from replicasmade of internal, fracture surfaces. In corn starch, long cylindricalmicrofibrils were found, arranged in a radial direction andimbedded in an amorphous matrix. Their diameter was uniformlyabout 200 Å. Microfibrils were also indicated in wheatstarch because of the prominence of their ends in surface view.Many microfibrils in corn starch appeared to be helically coiled.The more ordered starch substance was presumed to be localizedprincipally in the microfibrils.  相似文献   

2.

Main conclusion

Expression of amylosucrase in potato resulted in larger starch granules with rough surfaces and novel physico-chemical properties, including improved freeze–thaw stability, higher end viscosity, and better enzymatic digestibility. Starch is a very important carbohydrate in many food and non-food applications. In planta modification of starch by genetic engineering has significant economic and environmental benefits as it makes the chemical or physical post-harvest modification obsolete. An amylosucrase from Neisseria polysaccharea fused to a starch-binding domain (SBD) was introduced in two potato genetic backgrounds to synthesize starch granules with altered composition, and thereby to broaden starch applications. Expression of SBD–amylosucrase fusion protein in the amylose-containing potato resulted in starch granules with a rough surface, a twofold increase in median granule size, and altered physico-chemical properties including improved freeze–thaw stability, higher end viscosity, and better enzymatic digestibility. These effects are possibly a result of the physical interaction between amylosucrase and starch granules. The modified larger starches not only have great benefit to the potato starch industry by reducing losses during starch isolation, but also have an advantage in many food applications such as frozen food due to its extremely high freeze–thaw stability.  相似文献   

3.
Fibrillin-rich microfibrils are the major structural components of the extracellular matrix that provide elasticity in a majority of connective tissues. The basis of elastic properties lies in the organization of fibrillin molecules, which, unfortunately, is still poorly understood. An X-ray diffraction study of hydrated fibrillin-rich microfibrils from zonular filaments has been conducted to give an insight into the molecular structure of microfibrils in intact tissue. A series of measurements was taken during controlled tissue extension to observe alterations in the lateral packing of microfibrils. Computer-generated simulated patterns were used to fit the experimental X-ray scattering data and to obtain the fibril diameter and lateral distance between the fibrils. The results suggest a nonlinear correlation between external strain and decrease in fibril diameter and lateral spacing. This was accompanied by a nonlinear increase in axial periodicity and a structure with a 160-nm periodicity, which is reported here for the first time using X-ray diffraction. These changes may reflect the unraveling of fibrillin from the complex folded arrangement into a linear structure. This finding supports a pleating model where fibrillin molecules are highly folded within the microfibrils; more importantly, the connection is made between the interaction of individual microfibrils and the change in their suprafibrillar coherent organization during extension. We suggest that the intermediate states observed in our study reflect sequential unfolding of fibrillin and can explain the process of its reversible unraveling.  相似文献   

4.
Wheat and potato starches were hydrolysed with 2·2 n hydrochloric acid at 35°C for a period of time up to 15 days. The residues (lintnerised starches) were washed and freeze dried, and studied by differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), small-angle light scattering (SALS), small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). These techniques showed that profound changes took place in the first day of hydrolysis (during which time the extent of hydrolysis was 7·7% for potato starch and 12·5% for wheat starch). In particular, the gelatinisation enthalpy (ΔH) decreased, the X-ray crystallinity increased and the SANS and SAXS peaks (indicative of a regular spacing between crystalline and amorphous regions) virtually disappeared. The reduction in ΔH is surprising and is discussed at length. It was also shown that freeze drying results in a considerable lowering of the gelatinisation temperature of potato starch (and also of ΔH) while that of wheat starch is only slightly affected.  相似文献   

5.
A combined approach of fluorophore-assisted capillary electrophoresis (FACEL), high-sensitivity differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and light (LM) and scanning electron microscopy (SEM) was applied to study the effects of changes in amylopectin chain-length distribution on the assembly structures of sweet potato starches with similar amylose levels. It was shown that unlike ordinary sweet potato starch, starch extracted from Quick Sweet cultivar of sweet potato had anomalous high level of amylopectin chains with a degree of polymerization (DP) 6–12. Joint analysis of the obtained data revealed that amylopectin chains with DP 10–24 are, apparently, the dominant material for the formation of supramolecular structures in starch granules. In contrast, amylopectin chains with DP < 10 facilitated the formation of defects within crystalline lamellae. An increase in relative content of amylopectin chains with DP < 10 is accompanied by the correlated structural alterations manifested at all levels of starch granule organization (crystalline lamellae, amylopectin clusters, semi-crystalline growth rings, and granule morphology). Thus, the short amylopectin chains with DP < 10 were considered as an origin of the defectiveness in starch supramolecular structures.  相似文献   

6.
Starch from tubers potato (Solanum tuberosum), taro (Alocassia indica), new cocoyam (Xanthosoma sagitifolium), true yam (Dioscorea alata), and root cassava, (Manihot esculenta) crops was isolated and its morphology, composition and physicochemical properties were investigated before and after heat–moisture treatment (HMT) (100 °C, for 10 h at a moisture content of 30%). Native starch granules were round to oval to polygonal with smooth surfaces. The granule size (diameter) ranged from 3.0 to 110 μm.The total amylose content ranged from 22.4 to 29.3%, of which 10.1–15.5% was complexed by native lipid. The phosphorus content ranged from 0.01 to 0.1%. The X-ray pattern of potato and true yam was of the ‘B’-type. Whereas, that of new cocoyam and taro was of the ‘A’-type. Cassava exhibited a mixed ‘A+B’-type X-ray pattern. The relative crystallinity, swelling factor (SF), amylose leaching (AML), gelatinization temperature range and the enthalpy of gelatinization of the native starches ranged from 30 to 46, 22 to 54, 5 to 23%, 13 to 19 °C and 12 to 18 J/g, respectively. Susceptibility of native starches towards hydrolysis by 2.2N HCl and porcine pancreatic -amylase were 60–86% (after 12 days), and 4–62% (after 72 h), respectively. Retrogradation was most pronounced in the B-type starches. Granule morphology remained unchanged after HMT. The X-ray pattern of the B-type starches was altered (B→A+B) on HMT. However, that of the other starches remained unchanged. HMT decreased SF, AML, gelatinization enthalpy and susceptibility towards acid hydrolysis, but increased gelatinization temperatures and enzyme susceptibility. Extent of retrogradation and relative crystallinity decreased on HMT of true yam and potato starches, but remained unchanged in the other starches. The foregoing data showed that changes in physicochemical properties on HMT are influenced by the interplay of crystallite disruption, starch chain associations and disruption of double helices in the amorphous regions.  相似文献   

7.
Halloysite/potato starch composites were prepared by adding modified natural halloysite nanotubes into potato starch matrices to reenforce the mechanical properties of potato starch films. The halloysite/potato starch films were characterized by X-ray diffraction, scanning electron microscope and infrared spectrometry. Meanwhile, the mechanical properties and transparency of the films were studied. The results show that the modified halloysite nanotubes can be well distributed in the starch matrix and thus the tensile strength of the films was clearly enhanced. The flexibility of the films could be improved through adding glycerol although at the cost of reducing tensile strength. But incorporation of PVA could further improve the tensile strength of the halloysite/potato starch films.  相似文献   

8.
Potato pulp is a high-volume, low-value byproduct stream resulting from the industrial manufacture of potato starch. The pulp is a rich source of biologically functional dietary fibers, but the targeted valorisation of the fibers requires removal of the residual starch from the pulp. The objective of this study was to release the residual starch, making up 21–22% by weight of the dry matter, from the potato pulp in a rational way employing as few steps, as few enzyme activities, as low enzyme dosages, as low energy input (temperature and time), and as high pulp dry matter as possible. Starch removal to obtain dietary fibers is usually accomplished via a three step, sequential enzymatic treatment procedure using a heat stable α-amylase, protease, and amyloglucosidase. Statistically designed experiments were performed to investigate the influence of enzyme dose, amount of dry matter, incubation time and temperature on the amount of starch released from the potato pulp. The data demonstrated that all the starch could be released from potato pulp in one step when 8% (w/w) dry potato pulp was treated with 0.2% (v/w) (enzyme/substrate (E/S)) of a thermostable Bacillus licheniformis α-amylase (Termamyl® SC) at 70 °C for at least 65 min. The study also indicated that the amount of other carbohydrates released from the pulp during the release of starch was less than using the AOAC Official Method 985.29 and another recently published starch release method employed as a pretreatment for enzymatic upgrading of a pectinaceous potato pulp fiber.  相似文献   

9.
The effects of incorporating various montmorillonite nanoclays into wheat, potato, corn, and waxy corn starch samples were examined by rheology and X-ray diffraction. The nanoclays included the hydrophilic Cloisite Na+ clay as well as the more hydrophobic Cloisite 30B, 10A, and 15A clays. Frequency sweep and creep results for wheat starch–nanoclay samples at room temperature indicated that the Cloisite Na+ samples formed more gel-like materials than the other nanoclay samples. X-ray diffraction results showed no intercalation of Cloisite Na+ clays at room temperature, suggesting that starch granules interacted only with the clay surface and not the interlayer. When the various wheat starch–nanoclay samples were heated to 95 °C, the Cloisite Na+ samples exhibited a large increase in modulus. In contrast, the more hydrophobic nanoclay samples had comparable modulus values to the neat starch sample. These results suggested that during gelatinization, the leached amylose interacted with the Cloisite Na+ interlayer, producing better reinforcement and higher modulus values. X-ray diffraction results supported this interpretation since the data showed greater intercalation of Cloisite Na+ clay in the gelatinized samples. The samples containing wheat and corn starch showed comparable elastic modulus values during gelatinization. However, the potato and waxy corn samples had modulus values that rapidly decreased at higher temperatures.  相似文献   

10.
Differential scanning calorimetry (DSC), rheological measurements and granule size analyses were performed to characterize the influence of phosphorylation substitution levels on the properties of cross-linked potato starch. Phosphorus oxychloride (POCl3) was used to produce the cross-linked potato starch. The levels of the reagent used for the reaction ranged between 40 and 5000 ppm (dwb). Storage (G′) and loss (G″) moduli were measured for a 5% (w/w) gelatinized starch dispersion stored at 20 °C for 24 h after heating at 85 °C for 30 min. The samples from 80 to 500 ppm were recognized as ‘strong gel'systems, whereas native potato starch showed ‘weak gel'behavior. Steady shear and dynamic viscoelastic properties of gelatinized starch dispersion were compared. Furthermore, granule mean diameter was measured by laser scattering for a 1% (w/w) dispersion heated at 85 °C for 30 min. The granules in the 100 ppm sample swelled to a maximum of about 2.6 times the native starch granule mean diameter.  相似文献   

11.
Surface studies at ambient conditions of potato starch granules subjected to multiple freezing and thawing, performed by a high resolution non-contact atomic force microscopy (nc-AFM), revealed some details of the starch granule nanostructure. After the treatment, a significant separation and a chain-like organisation of the granule surface elements have been observed. An accurate analysis of the granule surface nanostructure with a single amylopectine cluster resolution could be carried out. The oblong nodules of approximately 20-50 nm in diameter have been observed at the surface of the potato starch granules. The same size particles were precipitated by ethanol from gelatinized potato starch suspensions. They were also detected at the surface of oat and wheat starch granules. After multiple freezing and thawing, the eroded potato granule surface revealed a lamellar structure of its interior. The 30-40 nm inter-lamellar distances were estimated by means of nc-AFM. These findings fit previously proposed dimensions of the structural elements in the crystalline region of the starch granule. The observed surface sub-particles might correspond to the single amylopectine side chain clusters bundled into larger blocklets packed in the lamellae within the starch granule. The results supported the blocklet model of the starch granule structure.  相似文献   

12.
Dazomet applied in the ridges in autumn or in spring, before potatoes were planted in them, controlled potato cyst-nematode (Heterodera rostochiensis), British pathotype A, better in sandy loam and peaty loam than Telone (1,3-dichloropropene mixture). In sandy loam dazomet controlled potato cyst-nematode as well when applied in spring as when applied in autumn and as well when the soil was ridged after treatment as when it was not. Telone was as effective when applied to ridges in autumn as when applied to ridges in spring. In peaty loam potato cyst-nematodes were least abundant after a crop of Maris Piper potatoes. The yields of King Edward potatoes were greatly increased and nematode multiplication was greatly reduced by dazomet incorporated in the ridges in autumn. Two equal doses of dazomet, one incorporated in the topsoil before, the other after ploughing, controlled potato cyst-nematode as well and increased the yield of King Edward potatoes more than an equivalent amount of dazomet applied after ploughing. Dazomet applied to silt loam soil in two dressings, one before, the other after, ploughing, controlled potato cyst-nematode better than an equal amount applied as a single dressing after ploughing. The nematode was controlled best by two large dressings of dazomet or by a combined treatment of dazomet and Telone.  相似文献   

13.
Summary Previous X-ray diffraction studies have established the crystallographic identity of tunicin with cellulose from plant cell walls. Enzymatic degradation of the tunicin results in the isolation of microfibrils 120–130 Å in width (which appear to consist of two sub-units). Using staining and freeze-etching techniques it has been demonstrated that the microfibrils occur in the test as aggregates measuring 2000–4000 Å in diameter. In this respect the physical texture of the cellulose ofPyura resembles that of collagen in animal connective tissue and does not resemble the texture of cellulose in either the primary or secondary cell walls of plants.Examination of fixed and frozen etched specimens showed that ferrocytes of the test and vesicles derived from them are closely associated with the cellulose microfibril bundles. However, at the optical level, autoradiographs of animals treated with C14 glucose showed greatest radioactivity to be in the epidermal cells of the mantle and of the blood vessels, but not in the ferrocytes. These cells also showed a considerable development of rough ER and of Golgi bodies. On the evidence obtained it is considered that the sites of cellulose synthesis are the epidermal cells of the mantle and of the blood vessels. The function of the test cells is unknown. The migration of ferrocytes to areas of wounding in the test suggests that they may have some lytic function associated with wound repair.  相似文献   

14.
A central issue in the understanding of Marfan syndrome deals with the functional architecture of fibrillin-containing microfibrils. Fibrillin-rich microfibrils are long extracellular matrix fibrillar components exhibiting a 50 nm periodic beaded-structure with a width of around 20–25 nm after rotary shadowing and a 10–12 nm diameter when observed in ultra-thin sections. They are composed of fibrillin monomers more or less associated with many other components which are, for the most part, poorly characterized up to date. They are known to be elastic but few data have been accumulated to understand their properties. Atomic force microscopy (AFM) allowed us to morphologically differentiate fibrillin-rich microfibrils from other fibrillar components and to investigate the thin structure of these beaded filaments in their native state. They showed, in AFM, a periodic beaded structure ranging from 50 to 60 nm and a width of about 40 nm. The different sizes of fibrillin-containing microfibrils previously observed after rotary shadowing and in ultra-thin sections was resolved with our technique and is revealed to be 10 nm in diameter. Each beaded microfibril appears to be composed of heterogeneous beads connected by 2–3 arms. An orientation of the microfibrils has been shown, and allows us to propose a complementary model of microfibrillar monomer association.  相似文献   

15.
The properties of the jalap starch (Operculina tuberosa Meisn.) were investigated and compared with other already known starches (potato and wheat starch). The jalap starch presented peak viscosity lower than the one from potato but higher than wheat starch, while the stability during the cooling down was higher than potato and wheat starch. The jalap starch presented X-ray pattern of type-A, which is typical of those from wheat starch. The rheological and physico-chemical characteristics presented by this source of starch were intermediate between those from wheat and potato, which makes it a promising commercial source to be explored, mainly in areas with food scantiness as in the Brazilian Northeast.  相似文献   

16.
Rice flour (18-25% moisture) and potato starch (20% moisture) were heated with continuous recording of the X-ray scattering during gelatinization. Rice flours displayed A-type crystallinity, which gradually decreased during gelatinization. The development of the characteristic 9 nm small-angle X-ray scattering (SAXS) peak during heating at sub-gelatinization temperatures indicated the gradual evolution into a stacked lamellar system. At higher temperatures, the crystalline and lamellar order was progressively lost. For potato starch (B-type crystallinity), no 9 nm SAXS peak was observed at ambient temperatures. Following the development of lamellar structures at sub-gelatinization temperatures, B-type crystallinity and lamellar order was lost during gelatinization. On cooling of partially gelatinized potato starch, A-type crystallinity steadily increased, but no formation of stacked lamellar structures was observed. Results were interpreted in terms of a high-temperature B- to A-type recrystallization, in which the lateral movement of double helices was accompanied by a shift along their helical axis. The latter is responsible for the inherent frustration of the lamellar stacks.  相似文献   

17.
Thallium(I) starchates of various degrees of substitution were prepared from potato, corn and hydrogen starch by reaction with either thallium(I) hydroxide or with thallium ethanolate. After thallation, hydrogen and potato starch exhibited typical characteristics of gelation whereas that of corn starch did not. The chemical structure of the products was investigated using X-ray photoelectron spectroscopy. Potato starch was thallated and contained chemically bound thallium whereas corn starch formed complexes with thallium(I) hydroxide and ethoxide.  相似文献   

18.
Cell wall structure and biogenesis in the unicellular green alga, Oocystis apiculata, is described. The wall consists of an outer amourphous primary layer and an inner secondary layer of highly organized cellulosic microfibrils. The primary wall is deposited immediately after cytokinesis. Golgi-derived products contribute to this layer. Cortical microtubules underlie the plasma membrane immediately before and during primary wall formation. They function in maintaining the elliptical cell shape. Following primary wall synthesis, Golgi-derived materials accumulate on the cell surface to form the periplasmic layer. This layer functions in the deposition of coating and cross-linking substances which associate with cellulosic microfibrils of the incipient secondary wall. Secondary wall microfibrils are assembled in association with the plasma membrane. Freeze-etch preparations of untreated, living cells reveal linear terminal complexes in association with growing cellulosic microfibrils. These complexes are embedded in the EF fracture face of the plasma membrane. The newly synthesized microfibril lies in a groove of the outer leaflet of the plasma membrane. The groove is decorated on the EF fracture face by perpendicular structures termed “ridges.” The ridges interlink with definitive rows of particles associated with the PF fracture face of the inner leaflet of the plasma membrane. These particles are termed “granule bands,” and they function in the orientation of the newly synthesized microfibrils. Microfibril development in relation to a coordinated multienzyme complex is discussed. The process of cell wall biogenesis in Oocystis is compared to that in higher plants.  相似文献   

19.
To decrease the polyhydroxyalkanoate (PHA) production cost by supplying renewable carbon sources has been an important aspect in terms of commercializing this biodegradable polymer. The production of biodegradable poly(3-hydroxyalkanoates) (PHA) from raw potato starch by the Bacillus cereus 64-INS strain isolated from domestic sludge has been studied in a lab-scale fermenter. The bacterium was screened for the degradation of raw potato starch by a starch hydrolysis method and for PHA production by Nile blue A and Sudan black B staining. Shake-flask cultures of the bacterium with glucose [2% (w/v)] or raw potato starch [2% (w/v)] produced PHA of 64.35% and 34.68% of dry cell weight (DCW), respectively. PHA production was also carried out in a 5-L fermenter under control conditions that produced 2.78 g/L of PHA and PHA content of 60.53% after 21 hr of fermentation using potato starch as the sole carbon source. Gas chromatography–mass spectroscopy (GC-MS) analyses confirmed that the extracted PHA contained poly(3-hydroxybutyrate) (PHB) as its major constituent (>99.99%) irrespective of the carbon source used. The article describes, for what we believe to be the first time, PHB production being carried out without any enzymatic or chemical treatment of potato starch at higher levels by fermentation. More work is required to optimize the PHB yield with respect to starch feeding strategies.  相似文献   

20.
Changes in contents of starch and protein, and activities of enzymes involved in starch synthesis were studied during tubcrization of stolon tips of Solanum tuberosum L. cv. Irish Cobbler. Starch content and activities of phosphorylase and granule-bound starch synthctase based on fresh weight increased rapidly in the early phase (stage I, the stolon tips just before swelling; stage 2, the swelling tips; stage 3, young tubers of 0.2–0.5 cm diameter), and they all remained nearly unchanged in the later phase (stage 3 to stage 6, young tubers of 3.5 cm diameter). The content of soluble protein based on fresh weight remained unchanged. Activities of soluble starch snythetase and ADP-glucose pyrophosphorylase were not detected at stage 1 and 2, but increased at later stages. Endogenous levels of auxin, cytokinin and gibberellin were assayed for the materials at the corresponding developmental stages. Auxin content was high at stages 1 and 2, and lowered at later stages. Cytokinin content increased abruptly at stage 6. Gibberellin content was low at all stages. The internal conditions for starch deposition and tuberization in potato were discussed in regard to regulation of enzyme activities by growth regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号