首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes inflorescence structure, including organogenesis of the panicle and flower clusters and vasculature of flowering branches, for two species of Ptychosperma, a genus of arecoid palms. The inflorescence is an infrafoliar panicle with up to four orders of branches in a spirodistichous arrangement conforming to an irregular one-half phyllotaxy. The primordium of the inflorescence is crescentic and the apex has two tunica layers, a group of central cells, and a rib meristem. The distal flower-bearing parts or rachillae of all branches develop acropetally early in ontogeny and are vertically oriented in the bud. Although these rachillae terminate branches of different sizes and orders, they are similar in size and in number of flower clusters produced. Internodes and lower parts of branches develop later. Bracts of four types are produced: a prophyll and empty peduncular bract, bracts which subtend lateral branches, bracts subtending triads, and floral bracteoles. The prophyll and peduncular bracts are tubular and completely closed around all branches until about three months before the flowers reach anthesis. Bracts subtending lateral branches and those that subtend triads enlarge by small amounts of apical, adaxial, and marginal growth to cover subtended apices during early ontogeny, but are small to absent at maturity. Flower clusters are triads of two lateral staminate and a central pistillate flower. Organogenesis indicates that the triad is a sympodial unit. Flowers develop successively, each floral apex bearing a bracteole that subtends the next flower. The vasculature of the inflorescence may be divided into two systems. Bundles of the main axis extend acropetally into the vertically oriented branches as they are initiated and form a central cylinder of larger bundles in each branch. Flower clusters are supplied by a peripheral system of smaller bundles that develop later in relation to the developing floral organs. Bundles of the peripheral system branch frequently, but branching levels are irregular. The irregular branching of peripheral bundles appears related to the phyllotaxy of the flower clusters and the random right or left position of the first flower of the triad. The level of branching of a bundle may depend on the position of a floral primordium with respect to an existing procambial strand. Three (-4) bundles supply each staminate flower and six (-10) the pistillate flower. The histologically specialized inflorescence has stomata and contains abundant starch. Tannins and raphides, spherical silica bodies, and various forms of sclerenchyma appear in sequence and apparently provide support and protection during the long exposure of the branches.  相似文献   

2.
All flowers of Anemopsis californica, the most specialized taxon of the family Saururaceae, are initiated as individual primordia subtended by previously initiated bracts, in contrast to the common-primordium initiation of all flowers of Saururus cernuus and of most flowers of Houttuynia cordata. Floral symmetry is bilateral and zygomorphic, and the sequence of initiation among floral parts is paired or whorled. In A. californica, the six stamens arise as three common primordia, each of which later bifurcates to form a pair. The three common primordia occupy sites corresponding to the positions of the three stamens in H. cordata flowers. In Anemopsis, the filaments of each pair are connate. Each stamen pair is vascularized by a single bifurcating vascular bundle. The three carpels per flower are usually initiated simultaneously although there may be some variation. Adnation between stamens and carpels results from zonal growth. Downward extension of the locule, and proliferation and expansion of receptacular tissue and inflorescence cortical tissue around the locule below the bases of the carpels produce the inferior ovary. The inflorescence terminates its activity as a flattened apical residuum, surrounded by bracts subtending reduced flowers most of which have stamens only.  相似文献   

3.
Two populations of Sagittaria brevirostra from the same lake were sampled 10 years apart and yielded similar data on inflorescence structure and on numbers and ratios of male and female flowers. Larger inflorescences have relatively more male than female flowers than do smaller inflorescences. Pollination success is unrelated to inflorescence size or sex ratio within an inflorescence.  相似文献   

4.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

5.
Flowers of Peperomia species are the simplest structurally of any of the members of the Piperaceae. The spicate inflorescences form terminally and in axillary position; in each, the apex first is zonate in configuration with a two-layered tunica while 3-4 leaves are initiated. Later, when the inflorescence apical meristem begins bract initiation, the biseriate tunica persists, but zonal distinctions diminish and the apex can be described in terms of a simple tunicacorpus configuration. The inflorescence apex aborts after producing 30-40 bracts in acropetal succession an abscission layer forms across the base of the apex, and the meristem dries and drops off. Bracts are produced by periclinal divisions in T2 (and occasionally also in the third layer as well); the later-formed floral apices arise by periclinal divisions in T2 and the third layer. Each floral apex is at first a long transverse ridge in the axil, perpendicular to the long axis of the inflorescence. This establishes bilateral symmetry in the flower, which persists throughout subsequent growth. The floral meristem becomes saddle-shaped, and two stamen primordia are delimited, one at either end and lower than the central floral apex. A solitary carpel is initiated abaxially, and soon forms a circular rim which heightens as a tube with an apical pore. Within the open carpel, a solitary ovule is initiated from the entire remains of the floral apical meristem; it, hence, is terminal in the flower, and its placentation is basal. Carpellary closure in P. metallica results from accelerated growth of the abaxial lip, and the two margins become appressed. Species differ greatly as to whether the abaxial or the adaxial lobe predominates in late stages of carpel development. In P. metallica, the receptive portion of the stigma forms from the shorter lobe which is overtopped. Stigmatoid tissue forms internal to the receptive stigma. The prevailing bilateral floral symmetry, absence of a perianth, and the spicate inflorescence are features which distinguish Peperomia (and Piperaceae) from the magnolialian line of angiosperms.  相似文献   

6.
The adult leaf of Carludovica palmata consists of a plicate lamina, adaxial hastula, petiole, and sheath. The leaf is unusual in the angiosperms because about two-thirds of the apical meristem is utilized in its initiation. The adult leaf requires about 4–5 plastochrons to mature. Shortly after its initiation the adult leaf and apical meristem collectively appear pyramid-shaped and various parts of the mature adult leaf may be traced back to particular portions of the pyramid. Plications develop by differential growth within the lamina, not by splitting of leaf tissue. Quantitative studies indicate that certain regions of the developing adult leaf elongate more rapidly or slowly than other regions depending upon the stage of leaf development. The adult leaf of C. palmata develops differently from those of previously studied palms in various ways. It therefore appears less justifiable to consider the superficial similarity between the adult leaves of various Cyclanthaceae (particularly those of Carludovica sensu strictu) and those of fan palms as evidence of especial affinity between the Cyclanthaceae and Palmae. Juvenile leaves of C. palmata differ from adult leaves both in their mode of origin and appearance at maturity. The juvenile leaf appears homologous to the entire adult leaf.  相似文献   

7.
A comparative developmental study of the inflorescence and flower of Hamamelis L. (4-merous) and Loropetalum (R. Br.) Oliv. (4–5 merous) was conducted to determine how development differs in these genera and between these genera and others of the family. Emphasis was placed on determining the types of floral appendages from which the similarly positioned nectaries of Hamamelis and sterile phyllomes of Loropetalum have evolved. In Hamamelis virginiana L. and H. mollis Oliv. initiation of whorls of floral appendages occurred centripetally. Nectary primordia arose adaxial to the petals soon after the initiation of stamen primordia and before initiation of carpel primordia. In Loropetalum chinense (R. Br.) Oliv. floral appendages did not arise centripetally. Petals and stamens first arose on the adaxial portion, and then on the abaxial portion of the floral apex. The sterile floral appendages (sterile phyllomes of uncertain homology) were initiated adaxial to the petals after all other whorls of floral appendages had become well developed. In all three species, two crescent shaped carpel primordia arose opposite each other and became closely appressed at their margins. Postgenital fusion followed and a falsely bilocular, bicarpellate ovary was formed. Ovule position and development are described. The nectaries of Hamamelis and sterile phyllomes of Loropetalum rarely develop as staminodia, suggesting a staminodial origin. However, these whorls arise at markedly different times and are therefore probably not derived from the same whorl of organs in a common progenitor. This hypothesis seems probable when one considers that the seemingly least specialized genus of the tribe, Maingaya, bears whorls of both staminodia and sterile phyllomes inside its whorl of stamens.  相似文献   

8.
Floral development in Piper was compared between four-staminate species (P. aduncum and P. marginatum) and six-staminate species (P. amalago). All Piper species have a syncarpous gynoecium composed of three or four carpels. The floral apex is initiated by a periclinal division in the subsurface layer in the axil of a bract 40-55 μm high; initiation of the bracts occurs separately and considerably earlier. The floral primordium widens and the first pair of stamens are initiated at either side. The median anterior stamen forms next, and the median posterior later. This sequence is common to all species studied. In the six-staminate P. amalago, the last two stamens form simultaneously in lateral-anterior positions. The stamens hence arise as pairs, and symmetry is bilateral or dorsiventral. The three or four carpels arise simultaneously; they are soon elevated on a gynoecial ring by growth of the receptacle below the level of attachment of the carpels to produce a syncarpous gynoecium. The floral apex lastly produces the solitary basal ovule and is used up in its formation.  相似文献   

9.
A developmental study of the inflorescence of Liquidambar styraciflua L. was conducted to clarify morphological discrepancies reported in the literature. Salient features of development are: 1) the inflorescence apex results from the conversion of a terminal, vegetative apex; 2) partial inflorescence apices arise as ellipsoid structures in axils of leaves, bracts, or transitional phyllomes; 3) development of male heads is acropetal whereas female heads differentiate basipetally; 4) the partial inflorescence apex becomes segmented into several distinct subunits indicating an axillary branch system of the third order; 5) distinct individual floral primordia are initiated on the subunits; 6) a complete absence of perianth development; 7) inception of carpel primordia in flowers of lower male heads as well as female heads, but a failure of the gynoecium to develop beyond an incipient stage in male heads; and 8) development of sterile structures around the base of the styles of only female flowers near the time of anthesis. Carpellary characteristics of the sterile structures are described, their morphological nature is discussed, and the phylogenetic position of Liquidambar is evaluated.  相似文献   

10.
The pistillate inflorescence of Casuarina verticillata is described as consisting of a primary axis bearing whorls of bracts with a cymule in the axil of each bract of the more central whorls. Each cymule consists of an atepallate, two-carpellate, syncarpous floret and two, lateral, once-lobed bracteoles. A “peripheral intercalary” meristem, in which divisions are primarily periclinal, forms a meshwork beneath the bracts from early development and moves the connate bracts centrifugally around the cymules and extends and binds the bracts, and to some extent the bracteoles, of the fertile part of the inflorescence together. Each bract receives a single trace; each cymule receives two traces. Each bundle extension of a cymule trace supplies: 1) a branch which joins its counterpart to become the anterior common carpellary bundle; 2) a second branch which joins its counterpart to become the posterior common carpellary bundle; and 3) a central branch which supplies a lateral bracteole. Within each floret, each common carpellary bundle provides a dorsal carpellary bundle, two ventral carpellary bundles (fertile anterior carpel) or one common ventral bundle (sterile posterior carpel). The ventral bundle-supplies join and form a single placental bundle which lies in the gynoecial septum, and which, in turn, supplies the two ovules in the anterior carpel. Whether the inflorescence is a simple racemose or a condensed cymose type cannot be determined from this species alone. The function of the sclerenchymatous, enclosing bracteoles and connate bracts is discussed.  相似文献   

11.
12.
13.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

14.
黄帚橐吾花序结构的资源配置与环境的关系   总被引:5,自引:1,他引:5       下载免费PDF全文
 为了系统地了解黄帚橐吾(Ligularia virgaurea) 自然种群的繁殖对策,在其繁殖分配研究的基础上,通过统计不同部位头状花序的生物量投入,进一步分析了存在于总状花序内资源分配上的结构效应及其对不同生境条件的反应。结果表明:1)总状花序、不同部位头状花序在资源投入上受其栖息生境各种生态因子的影响而在不同生境和平均种群密度间存在着差异,并表现出一定的趋势;2)可代表个体水平的总状花序大小、头状花序大小、头状花序数量和头状花序平均重量等特征,都与种群密度呈现出程度不同的负相关关系,而总状花序内不同部位的头状花序大小则与种群密度变化无关;3)总状花序内的资源分配存在着位置依赖性,这种显著差异表现为顶部头状花序比基部和中部头状花序有较大的资源分配;4)总状花序顶部、中部和基部头状花序的资源分配与总状花序大小表现出极显著或显著的负相关关系。  相似文献   

15.
16.
17.
18.
The adaptive significance of different types of inflorescences in flowering plants has been largely ignored. The few published studies investigating adaptive aspects of floral displays suggest that numbers of flowers and their arrangement in space and time determine levels of pollination and fruit-set in natural populations. The frequently conflicting demands placed on inflorescence architecture have led to an evolutionary compromise that maximizes the genetic contribution of an individual plant to the next generation. These conflicting demands include pollinator attraction vs. ovary competition, fruit dispersal vs. fruit predation, and reproductive vs. vegetative resource allocation. In most cases, the inflorescence size most successful in fruit production is also the most frequent in natural populations. In addition to quantity of offspring, inflorescence architecture affects, and in turn is affected by, the quality of offspring that result from selfing vs. outcrossing.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号