首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limnobium spongia produces upright vegetative axes and prostrate stolons. The upright axes bear new stolons, whereas the stolons bear new upright axes and fertile and sterile branching systems. Upright axes and fertile and sterile branching systems are all interpreted to have sympodial growth. However, it was not determined whether growth of stolons is monopodial or sympodial. Both stolons and upright axes branch in alternate plastochrons, and branching is achieved solely by the bifurcation of apical meristems. Each meristematic bifurcation is interpreted to represent the formation of a precocious lateral bud. The upright axes develop from presumed precocious lateral buds on stolons, whereas such buds on upright axes produce renewal shoots. Limnobium spongia exhibits a marked degree of mirror-image symmetry.  相似文献   

2.
The spicate inflorescence of Saururus cernuus L. (Saururaceae) results from the activity of an inflorescence apical meristem which produces 200–300 primordia in acropetal succession. The inflorescence apex arises by conversion of the terminal vegetative apex. During transition the apical meristem increases greatly in height and width and changes its cellular configuration from one of tunica-corpus to one of mantle (with two tunica layers) and core. Primordia are initiated by periclinal divisions in the subsurface layer. These are “common” primordia, each of which subsequently divides to produce a floral apex above and a bract primordium below. The bract later elongates so that the flower appears borne on the bract. All common primordia are formed by the time the inflorescence is about 4.4 mm long; the apical meristem ceases activity at this stage. As cessation approaches, cell divisions become rare in the apical meristem, and height and width of the meristem above the primordia diminish, as primordia continue to be initiated on the flanks. Cell differentiation proceeds acropetally into the apical meristem and reaches the summital tunica layers last of all. Solitary bracts are initiated just before apical cessation, but no imperfect or ebracteate flowers are produced in Saururus. The final event of meristem activity is hair formation by individual cells of the tunica at the summit, a feature not previously reported for apical meristems.  相似文献   

3.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

4.
5.
Pistillate Vallisneria americana produces upright vegetative axes and prostrate stolons and develops in a manner fundamentally similar to that of Limnobium spongia (Hydrocharitaceae) and certain other taxa of Alismatidae. The cauline portions of pistillate V. americana branch solely by the bifurcation of apical meristems, and their mode of branching offers clues concerning the nature of the plant body. The upright axes are interpreted to have sympodial growth, whereas at least certain stolons appear to be entirely monopodial. The upright axes are either typical vegetative axes or turions; and of these, only turions appear to survive the winter in at least one locality. Pistillate V. americana produces intravaginal squamules (multi-seriate trichomes) although they appear reduced in number relative to those in certain other hydrocharitaceous and alismatid taxa. Vallisneria americana exhibits a notable degree of mirror image symmetry which differs somewhat from that of Limnobium spongia.  相似文献   

6.
Tassel and ear primordia were collected from greenhouse-grown specimens of the Mexican maize landrace Chapalote and prepared for scanning electron microscopic (SEM) examination. Measurements of inflorescence apices and spikelet pair primordia (spp) were made from SEM micrographs. Correlation of inflorescence apex diameter with number of spikelet ranks showed no significant difference between tassels and ears, except at the two-rank level where the ear apical meristem had a significantly smaller diameter than corresponding two-ranked tassels. Within individual inflorescences, spp in different ranks enlarged at comparable rates, although the rates from one ear to the next along the stem differed. In both tassels and ears, spp divide to form paired sessile and pedicellate spikelet primordia when the spp is 150 μm wide; ear axes are significantly thicker than tassel axes at the time of bifurcation. The similarities in growth between ear and tassel primordia lend further support to the hypothesis that both the maize tassel and ear are derived from a common inflorescence pattern, a pattern shared with teosinte. Inflorescence primordial growth also suggests that a key character difference between teosinte and maize, distichous vs. polystichous arrangement of spikelets, may be related to size of the apical dome and/or rate of primordium production by the apical meristem. There appears to be more than a single morphological event in the shift from vegetative to reproductive growth. The evocation of axillary buds (ears) is independent of, and temporally separated from, the transition to flowering at the primary shoot apex (tassel).  相似文献   

7.
Plants of Pinguicula vulgaris L. have either clockwise or counterclockwise spiral phyllotaxy. The inception of floral primordia occurs in leaf sites as a normal sequence of development. Only two leaf primordia initiated late in the season develop into floral primordia in the following year. They do not represent a direct modification of the apical meristem nor of the detached meristem. The apical meristem continues to produce leaves in the vegetative phase and flowers in the reproductive phase, and thus the plants show a monopodial growth. Axillary buds are not developed in this perennial species and instead additional buds of adventitious ontogeny appear. Such buds are produced on the older leaves of larger plants, and they are extremely useful in the vegetative propagation of the species.  相似文献   

8.
The paper presents the results of an experiment with the cultivation ofButomus umbellatus at a stable water level of 0.8 m for 6 years. The plant growth, flowering and vegetative reproduction were measured and recorded at the end of each growing season. The species showed a great ability to reproduce vegetatively by rhizome fragments. Cultured plants ofButomus umbellatus did not show any decrease or limitation of growth or flowering caused by stable water level. The expansion of the rhizome system seems to be dependent on its spontaneous fragmentation.  相似文献   

9.
Investigation of the development and organography of the shoot systems of Microgramma vacciniifolia and M. squamulosa was undertaken for the purpose of determining: (1) the features of shoot growth that are responsible for the distinctive vining character of these epiphytic ferns; and (2) the mode of origin of branches and their contrast with leaf initiation. Shoots of both species are dorsiventral and plagiotropic (i.e., parallel to the substrate) in habit. Since the shoot apical meristem is radial in transectional symmetry, shoot dorsiventrality in Microgramma is a postgenital or secondary developmental event, and its inception is related to the initiation of lateral appendages. Leaves and buds arise in a distichous phyllotaxis and occupy opposite and alternating positions on the dorsal surfaces and flanks of the rhizome. Endogenous roots are initiated in two rows from the ventral surface of the stem, in the vicinity of the rhizome meristem; however, they do not emerge from the rhizome until some distance behind the tip and do not elongate until the region of substrate contact. We conclude that the vining nature of this fern rhizome is a result of precocious internodal elongation and the concomitant delay of leaf and bud expansion in the region of stem elongation. In addition, observation of branch origin confirms previous suggestions that branching in Microgramma is strictly lateral and extra-axillary and not a dichotomous derivative as proposed by some workers. Leaf and bud primordia differ not only in the nature of their respective vascular supplies but also in their actual course of initiation. In the case of the leaf, the primordium is precociously emergent and exhibits a lenticular apical cell at its summit when it is only one plastochron removed from the flanks of the apical meristem. By contrast, initials of the bud primordium divide less actively and remain in a sunken position for at least 5–6 plastochrons; only when the bud apex becomes expanded and emergent does a tetrahedral apical cell become recognizable at the tip of the bud promeristem. Because of the distinctive pattern of branch and leaf origin, as well as the lack of adventitious and phyllogenous origin of branch primordia, we suggest that the shoot of Microgramma is a useful test organism for the re-examination of the problem of leaf and bud determination in the ferns.  相似文献   

10.
The characterisation of the single flower truss ( sft) mutant phenotype of tomato ( Lycopersicon esculentum Mill.), as well as its genetic interactions with other mutations affecting FALSIFLORA ( FA) and SELF PRUNING ( SP) genes, has revealed that SFT is a key gene in the control of floral transition and floral meristem identity. The single sft mutation produces a late-flowering phenotype in both long-day and short-day conditions. In combination with fa, a mutation affecting the tomato gene orthologous to LFY, sft completely blocks the transition to flowering in this species. Thus, the phenotype of the sft fa double mutants indicates that SFT and FA participate in two parallel pathways that regulate the switch from vegetative to reproductive phase in tomato, and that both genes are indispensable for flowering. On the other hand, the replacement of flowers by vegetative shoots observed in the sft inflorescence suggests that SFT regulates flower meristem identity during inflorescence development of tomato. In addition to these two main functions, SFT is involved in the development of both flowers and sympodial shoots of tomato. First, the mutation produces a partial conversion of sepals into leaves in the first floral whorl, and a reduction in the number of floral organs, particularly carpels. Secondly, the sympodial development in the mutant plants is altered, which can be related to the interaction between SFT and SP, a gene controlling the number of nodes in sympodial shoots. In fact, we have found that the sft phenotype is epistatic to that of sp, and that the level of SP mRNA in the apical buds of sft around flowering is reduced. SFT can therefore co-ordinate the regulation of two simultaneous developmental processes in the tomato apical shoot, the promotion of flowering in one sympodial segment and the vegetative development of the next segment.  相似文献   

11.
Passiflora foetida bears an unbranched tendril, one or two laterally situated flowers, and one accessory vegetative bud in the axil of each leaf. The vegetative shoot apex has a single-layered tunica and an inner corpus. The degree of stratification in the peripheral meristem, the discreteness of the central meristem, and its centric and acentric position in the shoot apex are important plastochronic features. The procambium of the lateral leaf trace is close to the site of stipule initiation. The main axillary bud differentiates at the second node below the shoot apex. Adaxial to the bud 1–3 layers of cells form a shell-zone delimiting the bud meristem from the surrounding cells. A group of cells of the bud meristem adjacent to the axis later differentiates as an accessory bud. A second accessory bud also develops from the main bud opposite the previous one. A bud complex then consists of two laterally placed accessory bud primordia and a centrally-situated tendril bud primordium. The two accessory bud primordia differentiate into floral branches. During this development the initiation of a third vegetative accessory bud occurs on the axis just above the insertion of the tendril. This accessory bud develops into a vegetative branch and does not arise from the tissue of the tendril and adjacent two floral buds. The trace of the tendril bud consists of two procambial strands. There is a single strand for the floral branch trace. The tendril primordium grows by marked meristematic activity of its apical region and general intercalary growth.  相似文献   

12.
The restricted flowering of colored cultivars ofZantedeschia is a consequence of developmental constraints imposed by apical dominance of the primary bud on secondary buds in the tuber, and by the sympodial growth of individual shoots. GA3 enhances flowering inZantedeschia by increasing the number of flowering shoots per tuber and inflorescences per shoot. The effects of gibberellin on the pattern of flowering and on the developmental fate of differentiated inflorescences along the tuber axis and individual shoot axes were studied in GA3 and Uniconazole-treated tubers. Inflorescence primordia and fully developed (emerged) floral stems produced during tuber storage and the plant growth period were recorded. Days to flowering, percent of flowering shoots and floral stem length decreased basipetally along the shoot and tuber axes. GA3 prolonged the flowering period and increased both the number of flowering shoots per tuber and the differentiated inflorescences per shoot. Activated buds were GA3 responsive regardless of meristem size or age. Uniconazole did not inhibit inflorescence differentiation but inhibited floral stem elongation. The results suggest that GA3 has a dual action in the flowering process: induction of inflorescence differentiation and promotion of floral stem elongation. The flowering pattern could be a result of a gradient in the distribution of endogenous factors involved in inflorescence differentialtion (possibly GAs) and in floral stem growth. This gradient along the tuber and shoot axes is probably controlled by apical dominance of the primary bud. Online publication: 7 April 2005  相似文献   

13.
We studied the development and structure of the unusual trichotomous branching of Edgeworthia chrysantha. Three "branch primordia" are formed sequentially on the shoot apex of a main axis and develop into trichotomous branching. The branch primordia are clearly distinguishable from the typical axillary buds of other angiosperms; they develop much more rapidly than axillary buds, and the borders between the branch primordia and shoot apex of the main axis are anatomically unclear. Furthermore, at a later stage, leaves subtending the branch primordia produce typical axillary buds. These results suggest that the trichotomous branching in this species involves the division of the shoot apical meristem. Expression analysis of genes involved in branching or maintenance of the shoot apical meristem in this species should clarify the control mechanism of this novel branching pattern in angiosperms. We also observed the phyllotactic patterns in trichotomous branching and have related these patterns to the shoot system as a whole.  相似文献   

14.
'Sideshootless,’ a mutant strain of tomato which does not produce axillary buds during vegetative growth, was compared with normally branching plants in order to study the nature of development particularly with regard to axillary buds. Sectioned material revealed no indication of axillary bud initiation in the sideshootless plant at any time during the vegetative phase of growth. In the normal plants, buds were noted to arise in the axil of the fifth youngest leaf. The buds take their origin in tissue which is in direct continuity with the apical meristem. The bud primordia later become set apart from the apex as vacuolation takes place in the surrounding tissue. At the time of floral initiation, the mutant and normal strains behave similarly. Axillary buds appear in the axils of the 2 leaves immediately below the floral apex. One of the buds elongates to overtop the existing plant axis; the other develops as a typical sidebranch. The inflorescence is pushed aside in the process. This pattern is repeated with each inflorescence; thus an axis composed of several superimposed laterals results.  相似文献   

15.
Inflorescence and floral ontogeny are described in the mimosoid Acacia baileyana F. Muell., using scanning electron microscopy and light microscopy. The panicle includes first-order and second-order inflorescences. The first-order inflorescence meristem produces first-order bracts in acropetal order; these bracts each subtend a second-order inflorescence meristem, commonly called a head. Each second-order inflorescence meristem initiates an acropetally sequential series of second-order bracts. After all bracts are formed, their subtended floral meristems are initiated synchronously. The sepals and petals of the radially symmetrical flowers are arranged in alternating pentamerous whorls. There are 30–40 stamens and a unicarpellate gynoecium. In most flowers, the sepals are initiated helically, with the first-formed sepal varying in position. Petal primordia are initiated simultaneously, alternate to the sepals. Three to five individual stamen primordia are initiated in each of five altemipetalous sectorial clusters. Additional stamen primordia are initiated between adjacent clusters, followed by other stamens initiated basipetally as well as centripetally. The apical configuration shifts from a tunica-corpus cellular arrangement before organogenesis to a mantle-core arrangement at sepal initiation. All floral organs are initiated by periclinal divisions of the subsurface mantle cells. The receptacle expands radially by numerous anticlinal divisions in the mantle at the summit, concurrently with proliferation of stamen primordia. The carpel primordium develops in terminal position by conversion of the floral apex.  相似文献   

16.
In both Chamaedorea seifrizii Burret and C. cataractarum Martius each adult foliage leaf subtends one axillary bud. The proximal buds in C. seifrizii are always vegetative, producing branches (= new shoots or suckers); and the distal buds on a shoot are always reproductive, producing inflorescences. The prophyll and first few scale leaves of a vegetative branch lack buds. Transitional leaves subtend vegetative buds and adult leaves subtend reproductive buds. Both types of buds are first initiated in the axil of the second or third leaf primordia from the apex, P2 or P3. Later development of both types of bud tends to be more on the adaxial surface of the subtending leaf base than on the shoot axis. Axillary buds of C. cataractarum are similarly initiated in the axil of P2 or P3 and also have an insertion that is more foliar than cauline. However, all buds develop as inflorescences. Vegetative branches arise irregularly by a division of the apex within an enclosing leaf (= P1). A typical inflorescence bud is initiated in the axil of the enclosing leaf when it is in the position of P2 and when each new branch has initiated its own P1. No scale leaves are produced by either branch and the morphological relationship among branches and the enclosing leaf varies. Often the branches are unequal and the enclosing leaf is fasciated. The vegetative branching in C. cataractarum is considered to be developmentally a true dichotomy and is compared with other examples of dichotomous (= terminal) branching in the Angiospermae.  相似文献   

17.
The inflorescence development of three species of Piper (P. aduncum, P. amalago, and P. marginatum), representing Sections Artanthe and Ottonia, was studied. The spicate inflorescences contain hundreds or even thousands of flowers, depending on the species. Each flower has a tricarpellate syncarpous gynoecium and 4 to 6 free stamens, in the species studied. No sepals or petals are present. In P. marginatum the apical meristem of the inflorescence is zonate in configuration and is unusually elongate: up to 1,170 μm high and up to 480 μm wide during the most active period of organogenesis. Toward the time of apical cessation both height and diameter gradually diminish, leaving an apical residuum which may become an attenuate spine or may be cut off by an abscission zone just below the meristem. The active apex produces bract primordia; when each is 40–55 μm high, a floral apex is initiated in its axil. Both bract and floral apex are initiated by periclinal divisions in cells of the subsurface layer. The bracts undergo differentiation rather early, while the floral apices are still developing. The last-produced bracts near the tip of the inflorescence tend to be sterile.  相似文献   

18.
In this study we investigated Arabidopsis thaliana (L.) Heynh. inflorescence development by characterizing morphological changes at the shoot apex during the transition to flowering. Sixteen-hour photoperiods were used to synchronously induce flowering in vegetative plants grown for 30 d in non-inductive 8-h photoperiods. During the first inductive cycle, the shoot apical meristem ceased producing leaf primordia and began to produce flower primordia. The differentiation of paraclades (axillary flowering shoots), however, did not occur until after the initiation of multiple flower primordia from the shoot apical meristem. Paraclades were produced by the basipetal activation of buds from the axils of leaf primordia which had been initiated prior to photoperiodic induction. Concurrent with the activation of paraclades was the partial suppression of paraclade-associated leaf primordia, which became bract leaves. The suppression of bract-leaf primordia and the abrupt initiation of flower primordia during the first inductive photoperiod is indicative of a single phase change during the transition to flowering in photoperiodically induced Arabidopsis. Morphogenetic changes characteristic of the transition to flowering in plants grown continuously in 16-h photoperiods were qualitatively equivalent to the changes observed in plants which were photoperiodically induced after 30 d. These results suggest that Arabidopsis has only two phases of development, a vegetative phase and a reproductive phase; and that the production of flower primordia, the differentiation of paraclades from the axils of pre-existing leaf primordia and the elongation of internodes all occur during the reproductive phase.  相似文献   

19.
20.
Tucker, Shirley C. (Northwestern U., Evanston, III.) Development and phyllotaxis of the vegetative axillary bud of Michelia fuscata . Amer. Jour. Bot. 50(7): 661–668. Illus. 1963.—The vegetative axillary buds of Michelia fuscala are dorsiventrally symmetrical with 2 ranks of alternately produced leaves. The direction of the ontogenetic spiral in each of these buds is related both to the symmetry of the supporting branch and to the position of the bud along the branch. On a radially symmetrical branch, all the axillary buds are alike—all clockwise, for example. But in a dorsiventrally organized branch the symmetry alternates from clockwise in 1 axillary bud to counterclockwise in the next bud along the axis. Leaf initiation and ontogeny of the axillary apical meristem conform with those of the terminal vegetative bud. The axillary bud arises as a shell zone in the second leaf axil from the terminal meristem. During this process the axillary apex develops a zonate appearance. The acropetally developing procambial supply of the axillary bud consists wholly of leaf traces. At the nodal level the bud traces diverge from the same gap as the median bundle trace of the subtending leaf. Only the basal 1–2 axillary buds which form immediately after the flowers elongate each year, while the majority remains dormant with 3 leaves or fewer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号