首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary To understand the functions of the longitudinal and transverse flagella of dinoflagellates, the flagellar waveform and frequency of each flagellum were observed by high-speed video-recording. The longitudinal flagellum emerged from the anterior end of the cell and beat with a planar undulating wave whose plane was perpendicular to the valval sutural plane. The transverse flagellum curved around the anterior end of the cell and beat with a helical wave, with different alternating half pitches. The half pitch corresponding to the parts farther from the cellular antero-posterior axis was shorter than that of the parts closer to the axis. This pattern is described by the ratio of the outer-parts half pitch to the pitch of the whole period of the helix and seems to be characteristic of the dinoflagellates' transverse flagellum.Abbreviations p in half pitch corresponding to the inner parts of the transverse flagellum - p out half pitch corresponding to the outer parts of the transverse flagellum - P p pitch of helical swimming trajectory - R p radius of helical swimming trajectory - c rotational frequency of the cell  相似文献   

2.
3.
Comparative studies on the structure of genitalia in Pseudoxychila tarsalis Bates and the copulating behavior in 5 species of Cicindela respectively complement similar findings by Freitag [1] on Cicindela spp. and Palmer [4] on P. tarsalis. These strengthen the hypothesis that in tiger beetles the flagellum fits into the spermatheca duct during copulation; that the main function of the flagellum, which is closed at the apex and not connected to the ejaculatory duct, is to open and prepare the lumen of the spermatheca duct for sperm movement from the bursa copulatrix to the spermatheca; and that copulation proceeds in 3 phases: phase 1 in which the lumen of the spermatheca duct is cleared by the flagellum, phase 2 in which the flagellum is withdrawn from the spermatheca duct, and phase 3 in which semen is transferred from the gonopore of the ejaculatory duct to the bursa copulatrix, usually with a spermatophore.  相似文献   

4.
5.
Summary Electron microscopical investigations of the flagella of Pseudomonas rhodos reveal a fine structure consisting of a left handed double helix.In Pseudomonas echinoides cell and flagellum are joined by a pinlike connecting element. Opposite to the flagellum a cluster of fimbriae is polarly inserted in cells of this strain. In stars the cells are held together by the fimbriae.  相似文献   

6.
7.
Differentiation of Trypanosoma brucei, a flagellated protozoan parasite, between life cycle stages typically occurs through an asymmetric cell division process, producing two morphologically distinct daughter cells. Conversely, proliferative cell divisions produce two daughter cells, which look similar but are not identical. To examine in detail differences between the daughter cells of a proliferative division of procyclic T. brucei we used the recently identified constituents of the flagella connector. These segregate asymmetrically during cytokinesis allowing the new‐flagellum and the old‐flagellum daughters to be distinguished. We discovered that there are distinct morphological differences between the two daughters, with the new‐flagellum daughter in particular re‐modelling rapidly and extensively in early G1. This re‐modelling process involves an increase in cell body, flagellum and flagellum attachment zone length and is accompanied by architectural changes to the anterior cell end. The old‐flagellum daughter undergoes a different G1 re‐modelling, however, despite this there was no difference in G1 duration of their respective cell cycles. This work demonstrates that the two daughters of a proliferative division of T. brucei are non‐equivalent and enables more refined morphological analysis of mutant phenotypes. We suggest all proliferative divisions in T. brucei and related organisms will involve non‐equivalence.  相似文献   

8.
The distributed propulsive forces exerted on the flagellum of the swimming alga Chlamydomonas reinhardtii by surrounding fluid were estimated from experimental image data. Images of uniflagellate mutant Chlamydomonas cells were obtained at 350 frames/s with 125-nm spatial resolution, and the motion of the cell body and the flagellum were analyzed in the context of low-Reynolds-number fluid mechanics. Wild-type uniflagellate cells, as well as uniflagellate cells lacking inner dynein arms (ida3) or outer dynein arms (oda2) were studied. Ida3 cells exhibit stunted flagellar waveforms, whereas oda2 cells beat with lower frequency. Image registration and sorting algorithms provided high-resolution estimates of the motion of the cell body, as well as detailed kinematics of the flagellum. The swimming cell was modeled as an ellipsoid in Stokes flow, propelled by viscous forces on the flagellum. The normal and tangential components of force on the flagellum (fN and fT) were related by resistive coefficients (CN and CT) to the corresponding components of velocity (VN and VT).The values of these coefficients were estimated by satisfying equilibrium requirements for force and torque on the cell. The estimated values of the resistive coefficients are consistent among all three genotypes and similar to theoretical predictions.  相似文献   

9.
Euglenoids present the ability to alter the shape of their bodies, a process referred to as metaboly. Metaboly is usually used by phagotrophic cells to engulf their prey. However, Euglena gracilis is osmotrophic and photosynthetic. Though metaboly was discovered centuries ago, it remains unclear why E. gracilis undergo metaboly and what causes them to deform, and some consider metaboly to be a functionless ancestral vestige. Here, we discover that flagellum malfunctions trigger metaboly and metaboly is a smart escape strategy adopted by E. gracilis when the proper rotation and beating of the flagellum are hindered by restrictions including surface obstruction, sticking, resistance, or limited space. Metaboly facilitates escape in five ways: (i) detaching the body from the surface; (ii) enlarging the space between flagellum and the restricting surface which restores beating and rotation of the flagellum; (iii) decreasing the torque of viscous resistance for rotation of the body; (iv) decreasing the length of the body; and (v) crawling backwards on a surface or swimming backwards if the flagellum completely malfunctions or has broken off. Our findings suggest that metaboly plays a key role in enabling E. gracilis to escape from harmful conditions when flagellar functions are impaired or absent.  相似文献   

10.
A new species, Marsupiomonas pelliculata gen. et sp. nov. (Pedinophyceae), is described. A single flagellum emerges from a deep pit with a distinctive thickened margin. The flagellum has rigid fibrillar hairs which are probably formed in the perinuclear space. A short second flagellar basal body lies within the cell close to the basal body of the emergent flagellum and the flagellar root system consists of striated and microtubular roots. There is a distinctive theca covering all but the anterior end of the cell and also a single large bright green chloroplast with an immersed pyrenoid surrounded by a starch shell. The wide salinity tolerance of the species is discussed in relation to its distribution in estuarine and salt marsh habitats. The salient features of the new species—the insertion of the emergent flagellum into a deep pit and the possession of a theca—are also seen in Pedinomonas tenuis, and it is suggested that P. tenuis could be transferred to the new genus Marsupiomonas. The class Pedinophyceae now includes three genera (Pedinomonas, Resultor and Marsupiomonas) and the distinguishing features are discussed.  相似文献   

11.
The flagella in Cryptomonas ovata Ehrenberg and two other un-named strains of Cryptomonas both bear stiff hairs with fine distal filaments of the same type as those found in the Xanthophyceae, the Chrysophyceae sensu stricto, the Phaeophyceae, the Bacillariophyceae, the Eustigmatophyceae and the Oomycetes. On the longer of the two flagella the hairs are 2·5 µm long and in two opposite rows whereas on the shorter flagellum they measure only 1 µm, are arranged in a single row and are more closely spaced. The long flagellum also bears a characteristic lateral swelling with a tuft of hairs of the same type as on the remainder of the flagellum, at approximately the level at which it emerges from the gullet. The hairs on the flagella of Hemiselmis rufescens Parke are distributed in a similar manner to those in Cryptomonas but they are more flexible and the swelling and tuft of hairs appear to be absent from the long flagellum. Hairs are apparently absent from the short flagellum of Chroomonas sp. The periplast in Cryptomonas ovata shows a hexagonal pattern in surface view and in sections of all three Cryptomonas strains appears as a typical plasmalemma underlain by a discontinuous layer of electron-dense material with variable substructure. The distribution of flagellar hairs and the structure of the periplast appear to be characters unique to the Cryptophyceae and these features emphasise the isolated position of this class of algae.  相似文献   

12.
Brown algal male gametes show chemotaxis to the sex pheromone that is released from female gametes. The chemotactic behavior of the male gametes is controlled by the changes in the beating of two flagella known as the anterior and posterior flagellum. Our previous study using Mutimo cylindricus showed that the sex pheromone induced an increment in both the deflection angle of the anterior flagellum and sustained unilateral bend of the posterior flagellum, but the mechanisms regulating these two flagellar waveforms were not fully revealed. In this study, we analyzed the changes in swimming path and flagellar waveforms with a high-speed recording system under different calcium conditions. The extracellular Ca2+ concentration at 10−3 M caused an increment in the deflection angle of the anterior flagellum only when ionomycin was absent. No sustained unilateral bend of the posterior flagellum was induced either in the absence or presence of ionomycin in extracellular Ca2+ concentrations below 10−2 M. Real-time Ca2+ imaging revealed that there is a spot near the basal part of anterior flagellum showing higher Ca2+ than in the other parts of the cell. The intensity of the spot slightly decreased when male gametes were treated with the sex pheromone. These results suggest that Ca2+-dependent changes in the anterior and posterior flagellum are regulated by distinct mechanisms and that the increase in the anterior flagellar deflection angle and sustained unilateral bend of the posterior flagellum may not be primarily induced by the Ca2+ concentration.  相似文献   

13.
The longitudinal flagellum of Ceratium tripos moves in two dissimilar ways: undulation and retraction. The undulatory wave is planar and has a wavelength of 74.3 ± 9.6 μm and an amplitude of 14.2 ± 2.3 μm in sea water. The beat frequency is 30 Hz at 20°C, pH 8.0. The retractile motion is unique to Ceratium and is triggered by mechanical stimulation on the cell body, especially at the tip of the apical horn. When it retracts, the longitudinal flagellum folds every 4–5 μm along the flagellum. Cinematographic study showed that the flagellum folded from tip to base and was finally installed into the sulcus, a groove on the ventral side of the cell. This motion is completed in sea water within 28 msec. The retracted flagellum then re-extends and restores the undulation within a few seconds. The flagellum unfolds in the proximal portion first, then the distal, and finally the middle portion. Fixation always triggers the retraction. Scanning electron microscopy showed that the flagellum is folded and secondarily twisted in a helix. A new fiber in addition to the flagellar axoneme was found in the retracted flagellum by phase microscopy. This fiber (R-fiber) seems to contract during the retraction to fold the flagellum.  相似文献   

14.
The Campylobacter jejuni flagellum exports both proteins that form the flagellar organelle for swimming motility and colonization and virulence factors that promote commensal colonization of the avian intestinal tract or invasion of human intestinal cells respectively. We explored how the C. jejuni flagellum is a versatile secretory organelle by examining molecular determinants that allow colonization and virulence factors to exploit the flagellum for their own secretion. Flagellar biogenesis was observed to exert temporal control of secretion of these proteins, indicating that a bolus of secretion of colonization and virulence factors occurs during hook biogenesis with filament polymerization itself reducing secretion of these factors. Furthermore, we found that intramolecular and intermolecular requirements for flagellar‐dependent secretion of these proteins were most reminiscent to those for flagellin secretion. Importantly, we discovered that secretion of one colonization and virulence factor, CiaI, was not required for invasion of human colonic cells, which counters previous hypotheses for how this protein functions during invasion. Instead, secretion of CiaI was essential for C. jejuni to facilitate commensal colonization of the natural avian host. Our work provides insight into the versatility of the bacterial flagellum as a secretory machine that can export proteins promoting diverse biological processes.  相似文献   

15.
16.
Certain bacteria, such as Escherichia coli (E. coli) and Salmonella typhimurium (S. typhimurium), use multiple flagella often concentrated at one end of their bodies to induce locomotion. Each flagellum is formed in a left-handed helix and has a motor at the base that rotates the flagellum in a corkscrew motion.We present a computational model of the flagellar motion and their hydrodynamic interaction. The model is based on the equations of Stokes flow to describe the fluid motion. The elasticity of the flagella is modeled with a network of elastic springs while the motor is represented by a torque at the base of each flagellum. The fluid velocity due to the forces is described by regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their expressions are derived. The model is used to analyze the swimming motion of a single flagellum and of a group of three flagella in close proximity to one another. When all flagellar motors rotate counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the same initial conditions lead to a tumbling behavior characterized by the separation of the flagella, changes in their orientation, and no net swimming motion. The analysis of the flow provides some intuition for these processes.  相似文献   

17.
Flagella of living sperm of the ferns, Lygodium japonicum (Thunb.) Sw. and Marsilea vestita Hook, and Grev., beat three dimensionally with a continuous traveling helical wave. The wave is propagated from base to tip of the flagellum. Flagella of Lygodium and Marsilea complete 65 and 30 beat cycles per sec, respectively. Each flagellum circumscribes an open conicoid oriented in a latero-posterior direction. Only dead sperm have anteriorly directed flagella as illustrated in plant morphology textbooks.  相似文献   

18.
Summary— 2–4 nm filaments represent a new class of cytoskeletal components. They are found in ciliary and flagellar roots and centrosomes of all eucaryotes. They are also the major components of paraflagellar rods (PFR) in Euglena, trypanosomes and dinoflagellates. Oxyrrhis marina, a marine dinoflagellate, possesses a transverse and a longitudinal flagellum. Only the longitudinal flagellum carries the PFR along the proximal two-thirds of its length. This flagellum is not only capable of the classic flagellar beat but is also able to retract and bend, a property mediated by external calcium. To determine if calcium has a direct role in the bending, experimental conditions were established to permeabilization and reactivation. Our conditions to reactivate the axoneme function (wave propagation) appear similar to those observed in the case of the sea urchin sperm. The results show that in vitro, an increase in calcium concentration induces a conformational change of the longitudinal flagellum in the absence of ATP with a half maximum effect at 0.1 μM. In the presence of ATP, this morphology modification causes a total inhibition of the wave propagation which is replaced by non-propulsive contractions of low amplitude. As these properties are not shared by reactivated sea urchin sperm flagella or the transverse flagellum of O marina devoid of PFR, we propose that PFR are responsible for the bending phenomenon. A calcium shock also induces flagellar excision with a half maximum effect at 0.3 μM, and immunofluorescence results suggest that a centrin-like protein is present in O marina and is responsible for this excision.  相似文献   

19.
The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single‐cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight‐rod morphology showed 7–21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 versus 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10–30% among strains. However, quantitative comparisons suggest resistive force theory underestimates the influence of cell body shape on speed for helical shaped bacteria.  相似文献   

20.
Spermiogenesis in Plagioscion squamosissimus occurs in cysts. It involves a gradual differentiation process of spermatids that is characterized mainly by chromatin compaction in the nucleus and formation of the flagellum, resulting in the spermatozoa, the smallest germ cells. At the end of spermiogenesis, the cysts open and release the newly formed spermatozoa into the lumen of the seminiferous tubules. The spermatozoa do not have an acrosome and are divided into head, midpiece, and tail or flagellum. The spermatozoa of P. squamosissimus are of perciform type with the flagellum parallel to the nucleus and the centrioles located outside the nuclear notch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号