首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An analysis of hybridization in Liatris   总被引:1,自引:1,他引:0  
Donald A. Levin 《Brittonia》1967,19(3):248-260
Liatris aspera andL. spicata are remotely related species, and rarely have an opportunity to hybridize because of different flowering periods and ecological tolerances. Seasonal and ecological barriers have been surmounted in a population in southern Cook County, Illinois, which has resulted in extensive hybridization. The population was characterized on the basis of morphological and chemical features, pollen fertility, and chromosome pairing relationships. Plants considered to be F1 hybrids on the basis of morphology typically displayed the phenolic markers of both parental species, reduced fertility, and meiotic irregularities in the form of univalents and translocation figures. Plants judged to be backcrosses toL. aspera contained some of the phenolics ofL. spicata; however, backcrosses toL. spicata invariably lacked the phenolics ofL. aspera. The species-species phenolics ofL. aspera were inherited as a block, i.e., a hybrid had all or none of these compounds. The complex pattern of gene exchange within the population reflects the weakness of crossing and fertility barriers to hybridization.  相似文献   

2.
Ten kinds of interspecific hybrids were obtained involving the following species: H. surattensis L. (2x, genome constitution BB), H. sudanensis Hochr. (2x, GG), and H. rostellatus Guill. and Perr. (4x, GGHH) from Africa; H. furcatus Roxb. non Willd. (8x) from India and Ceylon; H. furcellatus Lam. and H. bifurcatus Cav. (both 4x, PPQQ) from South America; and H. heterophyllus Vent. (6x) from Australia. Chromosome pairing in pollen mother cells (PMC's) at metaphase I in the 4x hybrids H. bifurcatus-rostellatus and H. furcellatus-rostellatus indicated that the parents have one genome in common (Q = G or H). Hibiscus furcatus was shown earlier to have a B genome; hybrids of H. surattensis-sudanensis F1 X furcatus were hexaploid, having received an unreduced gamete from their hybrid parent, and had approximately 36 II, 36 I in PMC's. The genome formula of H. furcatus may therefore be designated BBGGWWZZ. The hybrid H. rostellatus-furcatus (BGGHWZ) confirmed that H. furcatus has a G genome in common with H. rostellatus; pairing of the other three genomes was inconsistent, as was that in H. rostellatus-heterophyllus. Some samples of the latter approached 36 II, 36 I, expected if H. heterophyllus were GGHHJJ; other samples had less pairing. Hibiscus furcatus-heterophyllus hybrids apparently arose from unreduced gametes of H. heterophyllus and originated as decaploids rather than heptaploids; chromosome number was unstable in PMC's. Nevertheless, multivalents, especially trivalents, were frequent enough to suggest that H. furcatus and H. heterophyllus share G genomes. On the other hand, an 8x H. bifurcatus-furcatus hybrid, which apparently arose from an unreduced gamete of H. bifurcatus, had a low multivalent frequency. Hybrids were obtained of H. heterophyllus X sudanensis and H. surattensis-sudanensis X heterophyllus, but the plants were weak and were not analyzed cytologically. We suggest that the New World, African, Indian, and Australian genomes which retain a considerable degree of homology (G or H or both) were distributed by land prior to separation of the southern continents by continental drift.  相似文献   

3.
Verne Grant 《Chromosoma》1953,5(1):372-390
Summary Gilia millefoliata andG. achilleaefolia, two annual diploid (n=9) species ofPolemoniaceae, crossed readily in certain combinations but not in others. The F1 hybrids were vigorous but sterile. They gave rise, apparently by the union of unreduced gametes, to an F2 generation of tetraploids, which were mostly fertile.Chromosome pairing in the hybrids varied markedly according to the state of nutrition of the plants. The F1 hybrids formed fewer clear diakinesis figures, fewer bivalents, fewer chiasmata per bivalent, and more attenuated or stretched bivalents when grown in 2 pots of sand than when grown in rich soil (Table 3). A pot-bound allotetraploid individual derived from this hybrid showed the same meiotic irregularities as the starved F1s until irrigated with a solution of mineral nutrients, after which its chromosomes paired regularly in bivalents (Table 2, Fig. 38).The capacity of the F1 hybrids to produce polyploids also differed strikingly in the two cultures. The rate of polyploidy of the stunted sand-grown hybrids was 2381 viable tetraploid zygotes per million flowers, while the corresponding figure for the luxuriant field hybrids was only 2.7 per million flowers.For the production of polyploid progeny by diploid parents — a process which should be clearly distinguished from normal fertility — the termpolyploidy rate is proposed. It is suggested that starvation of a structural hybrid may sometimes increase its polyploidy rate by reducing chromosome pairing to the point where restitution nuclei and hence unreduced gametes can be formed.  相似文献   

4.
Dwarfing polish wheat is a dwarfing accession of Triticum polonicum L. from Xinjiang of China. In the present study, the artificial hybridization between dwarfing polish wheat and two accessions of Aegilops tauschii Cosson. (AS60 and AS65) was carried out, and the F1 hybrids were obtained successfully without using embryo rescue techniques for the first time. The crossabilities of hybrids T. polonicum × Ae. tauschii (AS60) and T. polonicum × Ae. tauschii (AS65) were 1.67% and 0.60% respectively. Only the hybrids of T. polonicum × Ae. tauschii (AS60) germinated well, and 24 F1 hybrid plants were obtained. All the F1 hybrid plants grew vigorously, and the morphological traits were similar to bread wheat. The F1 plants had some obvious traits inherited from T. polonicum and Ae. tauschii and were completely sterile. Chromosome pairing in the hybrid was characterized by a large number of univalents, with an average of 20.56 and 0.22 bivalents per PMC, and no ring bivalents and multivalents were observed. Furthermore, the potential value of the F1 hybrids between T. polonicum and Ae. tauschii for studying wheat origin and breeding are discussed. The article is published in the original.  相似文献   

5.
Dewey , Douglas R. (Crops Res. Lab., Agric. Expt. Sta., Logan, Utah.) Morphology, fertility, and cytology of Agropyron repens × Agropyron desertorum F2's . Amer. Jour. Bot. 49(1): 78–86. Illus. 1962.—An 82-plant population derived from F1 hybrids of A. repens × A. desertorum included morphological types indistinguishable from the parent species as well as many intermediate forms. Most, if not all, of the F2 population were products of backcrossing of F1 hybrids to one of the parent species. Backcrossing of F1 hybrids to A. repens and A. desertorum occurred with equal frequency. Fifty-four percent of the F2 plants were completely sterile. Fertility in the F2 population was related to the nature of the F1 backcross. F2 plants obtained from backcrossing to A. desertorum were more fertile than equivalent backcrosses to A. repens. Fertility in the F2's was concentrated in a few plants. Nine F2's accounted for 85% of the seed produced in the 82-plant population. The most fertile plant produced 441 viable seeds. Meiotic chromosome counts of 66 F2's ranged from 30 to 49 and averaged 36. Chromosome number was related to the direction of the backcross. Chromosome associations in all F2 plants at metaphase I included many different combinations of univalents, bivalents and trivalents. Occasional pairing of A. repens and A. desertorum chromosomes were noted in some F2's. On the basis of morphology, fertility and chromosome pairing, genome formulae were assigned to the parent species. The genome formula of A. repens was given as BBBBCC and A. desertorum was designated as AAAA.  相似文献   

6.
The morphological, yield, cytological and molecular characteristics of bread wheat X tritordeum F1 hybrids (2n =6x = 42; AABBDHch) and their parents were analysed. Morphologically, these hybrids resembled the wheat parent. They were slightly bigger than both parents, had more spikelets per spike, and tillered more profusely. The hybrids are self-fertile but a reduction of average values of yield parameters was observed. For the cytological approach we used a double-target fluorescencein situ hybridization performed with total genomic DNA fromHordeum chilense L. and the ribosomal sequence pTa71. This technique allowed us to confirm the hybrid nature and to analyse chromosome pairing in this material. Our results showed that the expected complete homologous pairing (14 bivalents plus 14 univalents) was only observed in 9.59% of the pollen mother cells (PMCs) analysed. Some PMCs presented autosyndetic pairing of Hch and A, B or D chromosomes. The average number of univalents was higher in the wheat genome (6.8) than in the Hch genome (5.4). The maximum number of univalents per PMC was 20. We only observed wheat multivalents (one per PMC) but the frequency of trivalents (0.08) was higher than that of quadrivalents (0.058). We amplified 50 RAPD bands polymorphic between the F1 hybrid and one of its parents, and 31 ISSR polymorphic bands. Both sets of markers proved to be reliable for DNA fingerprinting. The complementary use of morphological and yield analysis, molecular cytogenetic techniques and molecular markers allowed a more accurate evaluation and characterization of the hybrids analysed here.  相似文献   

7.
Summary Intergeneric hybrids of Triticum aestivum (2n=42,AABBDD) with Agropyron ciliare (2n= 28,SSYY), A. trachycaulum (2n=28,SSHH), A. yezoense (2n=28,SSYY) and A. scirpeum (2n=28) are reported for the first time. F1 hybrids of T. aestivum were also produced with A. intermedium (2n=42,E1E1E2E2Z1Z1) and A. junceum (2n=14,JuJu). All wheat-Agropyron hybrids were obtained by embryo rescue technique. Cultivars and reciprocal crosses differed for seed set, seed development and F1 plant production. The F1 hybrids were sterile. Attempts to obtain amphiploids were unsuccessful. However, backcross derivatives were obtained with wheat as the recurrent parent.The level of chromosome pairing in A. trachycaulum x wheat, A. yezoense x wheat and wheat x A. junceum hybrids provided no evidence of homologous or homoeologous pairing. Mean pairing frequencies in A. ciliare x wheat, wheat x A. scirpeum and wheat x A. intermedium hybrids indicated homoeologous or autosyndetic pairing. Ph gene was more effective in regulating homoeologous pairing in A. yezoense x wheat hybrids than in A. ciliare x wheat hybrid. Chromosome pairing data of BC1 derivatives indicated that either some of the wheat chromosomes were eliminated or Agropyron chromosomes caused reduced pairing of wheat homologues.Contribution No. 82-653-J, Department of Plant Pathology, Kansas State Agricultural Experiment Station, Manhattan, Kan, USA  相似文献   

8.
Intergenomic F1 hybrids between L. auratum x L. henryi and their BC1 progeny were investigated through genomic in situ hybridization technique (GISH) to determine their potential value in lily breeding. We confirmed that F1 intergenomic hybrids possessed a set of chromosomes (x=12) from both parents and that flowers of the F1 auratum × henryi hybrid showed an intermediate morphological phenotype. Pollen size, viability and germination ability were measured through microscopic observations. F1 intergenomic hybrids produced a relevant frequency of 2n-gametes, which were successfully used to perform crosses with Oriental hybrids, resulting in the triploid Oriental Auratum Henryi (OAuH) hybrid. Twenty BC1 plants were generated by crossing between four different Oriental hybrid cultivars and F1 AuH hybrids using an in vitro embryo rescue technique, after which the genome constitution and chromosome composition were analyzed by GISH. All plants were triploid, showing 12 from female parents (diploid Oriental hybrid) and 24 from male parents (diploid F1 AuH hybrid). Overall, 16 out of 20 BC1 progeny possessed recombinant chromosomes with 1-5 crossover sites per plant. Cytological analysis of 20 BC1 plants by GISH verified that the occurrence of 2n pollen formation in all F1 AuH hybrids was derived from the FDR (first division restitution) mechanism, in which the genome composition of all BC1 plants possess 12 Oriental + 12 L. auratum + 12 L. henryi chromosomes. Allotriploids derived from the AuH hybrid were used as female for crossing with the diploid Oriental hybrid cultivar ''Sorbonne'' and considerable numbers of plants (0-6.5 plants per ovary) were only obtained when female OAuH (BC1) triploids were used. Taken together, the results of this study indicate that production and analysis of F1 AuH hybrids and their progeny through sexual polyploidization can be useful for efficient creation of important horticultural traits.  相似文献   

9.
A new contact zone between Centaurea aspera and Centaurea seridis was found in Morocco. Chromosome counts and flow cytometry showed that both taxa were tetraploid (4x = 44). A literature review and morphometric analysis established that C. aspera corresponds to the autopolyploid C. aspera subsp. gentilii and C. seridis corresponds to the allopolyploid C. seridis var. auriculata. This contact area was compared with the homologous contact zones in Spain formed by the diploid C. aspera subsp. stenophylla and the tetraploid C. seridis subsp. maritima. Natural hybrids between parental species were frequent in both areas. In Spain, hybrids were triploid (from reduced gametes A and gamete AB), highly sterile and exerted a ‘triploid block’. In Morocco, cytometry showed that hybrids were tetraploid and, therefore, probably fertile, but all the capitula lacked achenes. It is likely that the resulting genome of the new tetraploid hybrid (AAAB), through the fusion of reduced gametes AA (from subsp. gentilii) and AB (from var. auriculata), could explain irregularities in meiosis through formation of aneuploid gametes and, therefore, infertility of the hybrid. Moroccan sterile tetraploid hybrids develop, but have the identical irregularities to Spanish triploids, probably due to the odd number of homologous chromosomes. The new hybrid is first described as C. x subdecurrens nothosubsp. paucispinus. In addition, distribution and ecological traits are analysed.  相似文献   

10.
Summary Hybrids between B. inermis Leyss (2n=8x=56) and B. riparius Rehm. (2n=10x=70) were easily made. The F1 hybrids had a fertility of 20%–50% under open pollination and backcrossing to B. inermis. Chromosome pairing in B. riparius was predominantly as bivalents (29.04–33.85 per cell for plant means). Bivalents also predominated in the F1 hybrid (2n=9x=63) and there was a high level of pairing with no reduction in chiasma frequency. It was impossible to estimate the frequency of auto-versus allosyndetic pairing. Chromosome pairing in a hybrid between B. arvensis (2n=2x=14) and B. riparius confirmed that the B. riparius complement is capable of complete autosyndetic pairing. Chromosome numbers in the F2 progeny ranged from 2n=56 to 72 but they were skewed towards 2n=63 to 70. Backcrosses ranged from 2n=56 to 63, as expected, with the distribution skewed towards 2n=56. Selection towards the 2n=56 level would be difficult in the F2. Empirical observation suggested that cytoplasm had a major influence on morphology in the backcrosses. Additional studies are required to determine the best breeding scheme to introgress germ plasm between B. inermis and B. riparius.  相似文献   

11.
The process of speciation is a crucial aspect of evolutionary biology. In this study, we analysed the patterns of evolution of postzygotic reproductive isolation in Galliformes using information on hybridization and genetic distance among species. Four main patterns arose: (1) hybrid inviability and sterility in F1 hybrids increase as species diverge; (2) the presence of geographical overlap does not affect the evolution of postzygotic isolation; (3) the galliforms follow Haldane's rule; (4) hybrid inviability is higher in F2 than in F1 hybrids, but does not appear to be increased in the backcrosses. This study contributes to the growing evidence suggesting that the patterns of evolution of postzygotic isolation and the process of speciation are shared among avian groups (and animals in general). In particular, our results support the notion of F2 hybrid inviability as being key for the maintenance of species genetic integrity when prezygotic isolation barriers are overcome in closely related species, in which postzygotic isolation in the F1 hybrid might still not be fully developed. To the contrary, hybrids from backcrosses did not show serious inviability problems (at least not more than F1 hybrids), demonstrating that they could generate gene flow among bird species. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 528–542.  相似文献   

12.
Hexaploid A. repens, 2n = 42, and diploid A. cristatum, 2n = 14, were hybridized and gave rise to two 28-chromosome reciprocal hybrids. Approximately 1% of hand-emasculated florets of both parent species produced viable hybrid seed following controlled pollination. Early embryo abortion prevented greater hybrid seed set on A. repens, whereas failure of fertilization appeared to be the major cause of poor hybrid seed set on A. cristatum. Reciprocal differences in hybrid vegetative and spike morphology were striking. The A. repens × A. cristatum hybrid was vigorous, highly rhizomatous, and bore abundant spikes whose morphology was intermediate between that of the parent species. A. cristatum × A. repens hybrids were weak, non-rhizomatous with frequently-malformed spikes. Mean chromosome associations of 0.10 I, 20.10 II, and 0.43 IV were observed in 134 metaphase-I cells of A. repens. Subsequent meiotic stages were regular except for occasional laggards and bridges at anaphase I and II. Metaphase-I chromosome associations averaged 0.07 I and 6.97 II in 124 A. cristatum cells. Chromosome pairing in the hybrids was highly variable and averaged 11.45 I, 7.58 II, 0.44 III, and 0.02 IV per cell in 187 cells interpreted. From 5 to 14 laggards appeared in every hybrid cell at anaphase I. Bridges were observed in approximately 25% of the anaphase-I cells. Similar irregularities were observed at anaphase II. Pollen viability was estimated as 3%, and the hybrids failed to set viable seed. On the basis of chromosome pairing in the species itself and in the hybrids, A. repens was designated as a segmental autoallohexaploid with a genome formula of the type A1A1A2A2BB. Although A. repens and A. cristatum chromosomes paired occasionally, the genomes of the 2 species were essentially non-homologous. Some of the interpretational difficulties of genome analysis were discussed.  相似文献   

13.
Cyto-morphological studies op some species and hybrids in the Eu-Sorghums   总被引:2,自引:0,他引:2  
Summary Important morphological features such as plant height, leaf size and number of leaves, shape of the panicle and sessile spikelets, staminate condition of the pedicellate florets, nature of lemma, colour of the stigmatic surface and seeds etc., were studied in 8 Sorghum species and 10 F1 hybrids between them. Based on the data, interrelationship amongst the species are discussed.Pachytene pairing was complete and apparently normal, followed by regular meiosis at later stages resulting in high pollen stainability and good seed setting in all the parental species except the male sterile Kafir. Studies on the pairing properties of the differentially stained regions showed that synapsis starts from the proximal to the distal end and separation of the split chromosomes starts from the distal to the proximal.The interspecific hybrids studied are classified into four types based on pachytene pairing and pollen sterility. 1. normal pairing accompanied by high pollen fertility, 2. normal pairing accompanied by partial pollen sterility. 3. irregularities in the pachytene pairing followed by partial pollen sterility and 4. irregularities in the pachytene pairing accompanied by normal pollen fertility. Suitable explanations are advanced to explain the meiotic aberrations noted in some of the hybrids under study.Cytogenetical mechanisms underlying species differentiation in the Eu-Sorghum species are discussed.  相似文献   

14.
Employing nine clones ofMentha arvensis and four clones ofM. spicata, 932 F, hybrids were synthesized and compared to 20 clones ofM. x gracilis. Two clones ofM. x gracilis with 60 somatic chromosomes were matched to a selected F1 hybrid. The other 18 clones ofM. x gracilis had somatic chromosome numbers of 60, 72, 84, and 96, and while these chromosome numbers appeared in the F1 progeny, morphological matches correlated with their correct chromosome numbers were not synthesized. The range of pollen and seed fertility, as well as the inheritance of male-sterility, leaf pubescence, and crispness, indicates that no one character can be used to identifyM. x gracilis, but all characters can be explained fromM. arvensis x M. spicata.  相似文献   

15.
Ann Kenton  Keith Jones 《Chromosoma》1985,92(3):176-184
Two closely related species of Gibasis, G. karwinskyana and G. consobrina, and their F1 hybrids were studied cytologically at the diploid and tetraploid level. Despite similarity in their basic karyotype, pairing was extremely limited in the diploid hybrid and almost exclusively autosyndetic in the tetraploid, except for multivalent formation due to interchange heterozygosity. The analysis was considerably facilitated by the use of C-banding techniques at meiosis, by which the chromosomes of each species could be readily identified. In the parents, quadrivalents were formed between homologous but non-identical chromosomes, which also formed autosyndetic bivalents in the hybrids. Meiotic pairing in the hybrids was unaffected by polytypy for C-bands among different populations of the parental species.  相似文献   

16.
We performed transplant experiments with Louisiana irises to test the assumptions of three models of hybrid zone structure: the bounded hybrid superiority model, the mosaic model, and the tension zone model. Rhizomes of Iris fulva, I. hexagona, and F1 and F2 hybrids were planted at four sites in southeastern Louisiana in 1994. Wild irises grew at all four sites, but differed in genotypic composition among sites. The sites were characterized by (1) pure I. fulva plants; (2) I. fulva-like hybrids; (3) I. hexagona-like hybrids; and (4) pure I. hexagona plants. The sites differed significantly in light availability, soil moisture and chemical composition, and vegetation. Survival of transplants was high in all sites and did not differ significantly among plant classes. Iris hexagona produced significantly more leaf material than I. fulva at the I. hexagona and I. hexagona hybrid sites. The two species did not differ in leaf production at the I. fulva and I. fulva hybrid sites. Leaf production by both classes of hybrid was as great as, or significantly greater than, both parental classes in all sites. Iris hexagona rhizomes gained mass in the I. hexagona and I. hexagona hybrid sites, but lost mass in the I. fulva and I. fulva hybrid sites. Iris fulva rhizomes lost mass in all sites. There were no significant differences in rhizome growth among classes at the I. fulva site. At all other sites, F1 rhizomes grew significantly more than all other classes except for I. hexagona at the I. hexagona hybrid site. There were no significant differences among classes in the production of new ramets. Overall blooming frequencies were 30% for I. fulva, 10% for F1s, 3% for F2s, and 0.7% for I. hexagona. Blooming frequency did not differ among sites for I. fulva, but significantly more F1s bloomed at the I. hexagona site than at the I. fulva site. These results are inconsistent with all three models of hybrid zone structure. They suggest that once rhizomes become established, hybrids can reproduce by clonal growth as successfully as parents in all habitats, and can outperform them in some habitats. Clonal reproduction may ensure the long-term survival of early generation hybrids and allow the establishment of introgressed populations, despite the fact that F1 hybrids are rarely produced in nature.  相似文献   

17.
The crossability between Brassica tournefortii (TT, 2n = 20) and Brassica rapa (AA, 2n = 20) and the cytomorphology of their F1 hybrids were studied. Hybrids between these two species were obtained only when B. tournefortii was involved as a female parent. The hybrid plants were intermediate for most of the morphological attributes and were found to be free from white rust under field conditions. The F1 plants showed poor pollen fertility, although occasional seed set was achieved from open pollination. Self-pollination or backcrosses did not yield any seeds in these plants. The occurrence of chromosome association ranging from bivalents (0–7), trivalents (0–2) to a rare quadrivalent (0–1) in the dihaploid hybrids indicates pairing between the T and A genomes. The homoeologous pairing coupled with seed set in the F1 plants offer an opportunity for interspecific gene transfers from B. tournefortii to B. rapa and vice-versa through interspecific hybridization. Received: 3 July 2000 / Accepted: 22 September 2000  相似文献   

18.
Diploid populations of Aegilops mutica and Aegilops speltoides containing B chromosomes have been used as male parents in crosses with aneuploid genotypes of Triticum aestivum to investigate the effect of B chromosomes on meiotic homologous and homoeologous chromosome pairing. F1 hybrids of T. aestivum/Ae. mutica and T. aestivum/Ae. speltoides segregated into four classes with regard to the degree of meiotic chromosome pairing, irrespective of the presence of B chromosomes. The B chromosomes do not introduce factors altering the level of pairing other than that due to the natural allelic and gene variation occurring in the diploids. Similarly no reduction in pairing of homologous chromosomes was observed in genotypes in which pairs of homologues co-existed with B chromosomes. However, a significant drop in chiasma frequency was observed in F1 hybrids of T. aestivum × Ae. mutica with B chromosomes and T. aestivum × Ae. mutica nullisomic for wheat chromosome 5D with B chromosomes, in temperature regimes of 12° C. No asynapsis occurred in similar hybrids in the absence of Mutica B chromosomes at low temperatures. The low-temperature sensitive phase lies early in the pre-meiotic interphase. In this instance the Mutica B chromosomes are interacting with specific gene loci of the A chromosomes. Synaptic pairing has been observed between A and B chromosomes in Ae. mutica. A high frequency of pollen mother cells with twice the number of chromosomes was observed in hybrids in the presence of Mutica B chromosomes due to failure of spindle formation at the last pre-meiotic mitosis. Meiotic spindle irregularities occurred in hybrids containing Speltoides B chromosomes. Hybrids of Ae. speltoides + B's X Ae. mutica + B's displayed the mitotic and meiotic spindle abnormalities introduced by the presence of the B chromosomes of each parent.  相似文献   

19.
Diploid (2n = 20) and tetraploid (2n = 40) Zea mays L. were crossed with diploid (2n = 36) and tetraploid (2n = 72) Tripsacum dactyloides (L.) L. to produce a series of hybrids combining different numbers of haploid genomes from each parent. Eight hybrid groups and three parental groups were studied morphologically. Twenty-nine quantitative characters were recorded for each sample. Data were analyzed by univariate analysis of variance, multivariate analysis of variance, and discriminant function analysis, in an attempt to evaluate hybrid differences objectively and determine which morphological characters contribute statistically to group separation. The overall MANOVA F test was significant, establishing the presence of real differences between the hybrids; discriminant function analysis indicated that the percent of paired pistillate spikelets/cupule in the lateral inflorescence was the main variable which differentiated hybrids. Duncan's Multiple Range Tests for significant differences between means were applied to five variables contributing maximally to group discrimination, using the appropriate univariate ANOVAs. Pronounced maize-like attributes of backcross hybrids, as compared with corresponding F1's possessing similar genome constitutions, gave possible evidence of gene transfer between Zea mays and Tripsacum during backcrossing to maize.  相似文献   

20.
Chromosomal rearrangements can contribute to the evolution of postzygotic reproductive isolation directly, by disrupting meiosis in F1 hybrids, or indirectly, by suppressing recombination among genic incompatibilities. Because direct effects of rearrangements on fertility imply fitness costs during their spread, understanding the mechanism of F1 hybrid sterility is integral to reconstructing the role(s) of rearrangements in speciation. In hybrids between monkeyflowers Mimulus cardinalis and Mimulus lewisii, rearrangements contain all quantitative trait loci (QTLs) for both premating barriers and pollen sterility, suggesting that they may have facilitated speciation in this model system. We used artificial chromosome doubling and comparative mapping to test whether heterozygous rearrangements directly cause underdominant male sterility in M. lewisii–M. cardinalis hybrids. Consistent with a direct chromosomal basis for hybrid sterility, synthetic tetraploid F1s showed highly restored fertility (83.4% pollen fertility) relative to diploids F1s (36.0%). Additional mapping with Mimulus parishii–M. cardinalis and M. parishiiM. lewisii hybrids demonstrated that underdominant male sterility is caused by one M. lewisii specific and one M. cardinalis specific reciprocal translocation, but that inversions had no direct effects on fertility. We discuss the importance of translocations as causes of reproductive isolation, and consider models for how underdominant rearrangements spread and fix despite intrinsic fitness costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号