首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The developmental anatomy of Mirabilis jalapa was investigated during the first 90 days of growth. The primary thickening meristem (PTM) initially differentiates in the pericycle at the top of the cotyledonary node 18 days after germination, then basipetally in the pericycle through the hypocotyl. The PTM differentiates acropetally into the stem and in the pericycle of the primaiy root, commencing 22 days after germination. Endodermis is easily identifiable in hypocotyls as well as in primary roots because of Casparian thickenings in its cells. It has not been definitely identified in stems. There are three rings of primary vascular bundles in the stem. The PTM differentiates as segments of cambium in a layer of cells (probably in the pericycle) on an arc between vascular bundles of the outer bundle ring. Later, arcs of PTM differentiate externally to the phloem of each bundle. Each arc forms a connection between original segments of PTM lying on either side of each vascular bundle. Thus, the PTM becomes a continuous cylinder. The PTM differentiates in the pericycle outside vascular tissue in the hypocotyl and root. Differentiation of the PTM and the mode of secondary thickening is similar in plants exposed to short (8-hr) and to long (18-hr) photoperiods, but some differences were observed. The PTM differentiates closer to the stem apex in all plants over 18 clays of age growing vegetatively under long photoperiods. That is, the diffuse lateral meristem, in whose cells the PTM differentiates in young intemodes, is shorter in nearly all investigated plants growing in long photoperiods. The hypocotyl and base of the primary root of 40-day-old plants in short photoperiods were more enlarged than those of the same age plants in long photoperiods; but, at the end of 64 days, the hypocotyl and primaiy root base were larger in plants growing under short photoperiods. Thirty-four days after seed germination, flower initiation occurs in plants exposed to short photoperiods. One hundred fifty days after seed germination, flowers differentiate on plants exposed to long photoperiods.  相似文献   

2.
Observations were made of stem sections stained for RNA and protein of Yucca whipplei ranging from germinated seedlings to 6-month-old plants. One-, two-, and three-month-old plants were labeled with tritiated thymidine, fixed in FAA, sectioned, stained with the Feulgen reaction, and prepared for autoradiography. The serial transverse sections were outlined with a drawing tube recording all labeled nuclei on a computer graphics tablet. Computer-assisted three-dimensional reconstructions were made to observe the locations of labeled nuclei. The two techniques are in agreement: the thickening meristem is broad near the top of the stem, occupies a narrower band at more basipetal levels, and disappears below the level of recent root initiation. There are no gaps in staining or labeling, and there are no changes in staining or labeling that would distinguish between the activities of the primary thickening meristem and the secondary thickening meristem in those plants which possess both. The meristems are continuous at all stages of development in the young vegetative stem. The STM is interpreted to be a developmental continuation of the PTM.  相似文献   

3.
Stems 1, 2, 3 months old of Allium cepa L. were labelled with tritiated thymidine, fixed in FAA, sectioned, stained with the Feulgen reaction, and prepared for autoradiography. The serial transverse sections were outlined with a camera lucida, recording labelled nuclei as dots. These drawings were used for 3-dimensional reconstructions of the locations of labelled nuclei. Near the top of the stem, labelled nuclei occur in a broad band, whereas they occur in narrower bands at successively lower levels in the stem, and finally labelled nuclei disappear. The locations of the labelled nuclei correspond to the location of the primary thickening meristem (PTM) in the stem of onion as determined by previous histological and histochemical observations. Microspectrophotometry was used to measure the relative amounts of DNA in Feulgen-stained nuclei of the PTM in serial transverse sections of 1- and 2-month-old onion stems. A bimodal distribution was obtained which can be explained by changes in DNA levels during the cell cycle. No evidence of polyploid nuclei was observed. One can conclude, therefore, that the PTM is the site of cell division activity during the primary stem thickening process in onion.  相似文献   

4.
Seedlings of Atriplex hortensis were studied to ascertain; 1) in which organ the primary thickening meristem (PTM) first differentiates; 2) the direction of differentiation of the PTM, and 3) the pattern of differentiation of conjunctive tissue. The PTM initially differentiates in pericycle of the primary root base 11 days after emergence of the primary root. It then differentiates in the transition region of the hypocotyl, mostly in cells of pericycle between pairs of vascular bundles. In the upper hypocotyl, PTM differentiates by day 20 in the inner layer of cortical parenchyma. In the epicotyl, PTM apparently differentiates in the inner layer of cortex, by day 24. Desmogic xylem differentiates from radial files of internal conjunctive tissue cells and desmogic phloem differentiates opposite desmogic xylem strands from newly formed cells of external conjunctive tissue. No interfascicular cambium differentiates in the root, hypocotyl, or epicotyl.  相似文献   

5.
Anatomical observations were made on 1-, 2-, and 3-yr-old plants of Yucca whipplei Torr, ssp. percursa Haines grown from seed collected from a single parent in Refugio Canyon, Santa Barbara, California. The primary body of the vegetative stem consists of cortex and central cylinder with a central pith. Parenchyma cells in the ground tissue are arranged in anticlinal cell files continuous from beneath the leaf bases, through the cortex and central cylinder to the pith. Individual vascular bundles in the primary body have a collateral arrangement of xylem and phloem. The parenchyma cells of the ground tissue of the secondary body are also arranged in files continuous with those of the primary parenchyma. Secondary vascular bundles have an amphivasal arrangement and an undulating path with frequent anastomoses. Primary and secondary vascular bundles are longitudinally continuous. The primary thickening meristem (PTM) is longitudinally continuous with the secondary thickening meristem (STM). Axillary buds initiated during primary growth were observed in the leaf axils. The STM becomes more active prior to and during root initiation. Layers of secondary vascular bundles are associated with root formation.  相似文献   

6.
The PTM should be defined as a diffuse primary meristem which decreases in cross-sectional extent (i.e., becomes a thinner-walled cylinder) in a basipetal direction. It is associated with extensive anticlinal cell files and consists of cell initials that divide predominantly in periclinal planes. This meristem occurs typically in monocotyledons, especially those with thick, compact stems in species with rosette shoot axes. The PTM is also associated with a wide crown, so that the apical meristem is either slightly above the level of youngest leaf primordia, at approximately the same level as the leaf primordia, or distinctly sunken below surrounding stem tissue and the youngest leaf primordia. The location is dependent on the extent of primary thickening growth occurring in a particular species. A meristem associated with primary thickening of other plant groups should not be called a primary thickening meristem unless all of the above characteristics are shown to be associated with the meristem being examined. The primary thickening meristem is responsible for primary thickening of a stem axis. Its ontogenetic relationship with the STM needs further investigation. Extensive primary stem thickening has been observed in non-monocotyledons (ferns, lycopods, cycads, and dictyledons). Some of these organisms appear to undergo primary thickening from a PTM in a similar process as that which occurs in monocotyledons. Further research is necessary to establish the mechanisms of primary thickening in these cases.  相似文献   

7.
The development of radial growth which leads to the pachycaulous form was investigated in eight of the 10 genera of the Cycadales; i.e., Ceratozamia, Cycas, Dioon, Encephalartos, Macrozamia, Microcycas, Stangeria, and Zamia. In all taxa, development of radial growth is essentially the same: a primary thickening meristem is differentiated in the stelar region of the cotyledonary node of the seedling at germination and produces derivatives mainly centrifugally. This primary thickening meristem (PTM) then differentiates acropetally and becomes continuous with the peripheral zone of the shoot apex. At first the PTM is a vertical cylinder, but as the seedling continues to grow into an adult plant, the PTM shows a more horizontal orientation (like an open umbrella) and produces the broad cortex. Secondary growth is by a vascular cambium which produces secondary xylem to the inside and secondary phloem to the outside. The broad pith originates from derivatives of the rib meristem of the massive shoot apex. The seedling and young plant is composed of a shortened shoot (i.e., no internodes) produced by the PTM and rib meristem, and a large fleshy primary root which results from a diffuse growth pattern. Individual cells in both the pith and cortex of the root divide. Their derivatives divide at right angles to the original division plane. Thus, quartets and even octets of cells are recognizable and can be traced to individual parent cells.  相似文献   

8.
Phytolacca dioica L., an evergreen tree of the Phytolaccaceae, is one of the species of Phytolacca which shows anomalous secondary thickening in its stem. This mode of thickening has been regarded as successive cambial activity or alternatively, in some more recent interpretations, as thickening by unidirectional activity of a cambial zone. The stem thickening of P. dioica is of the former type. The cambium produces fascicular strands, showing centrifugal differentiation of xylem and centripetal differentiation of phloem on opposite sides of the cambial layer, and rays are produced between the fascicular areas. In both xylem and phloem the younger elements are closer to the cambium than the older elements. Succeeding cambia arise periodically by periclinal divisions in a layer of parenchyma cells two or three cells beyond the outermost intact phloem derived from the current cambium. Each cambium forms a few parenchyma cells on both sides before it forms derivatives which mature into lignified xylem elements or conductive elements of the phloem. The parenchyma thus formed toward the outside later becomes the site of the origin of the succeeding cambium. Only one or two layers of this phloem parenchyma go on to form the new cambium; the remaining cells accumulate between the outermost phloem and the cortex. P. weberbaueri shows stem structure similar to P. dioica. P. meziana, a shrub, shows normal stem structure.  相似文献   

9.
Anomalous secondary thickening occurs in the main axis of Bougainvillea spectabilis as a result of a primary thickening meristem which differentiates in pericycle. The primary thickening meristem first appears in the base of the primary root about 6 days after germination and differentiates acropetally as the root elongates. It begins differentiating from the base of the hypocotyl toward the shoot apex about 33 days after germination. The primary thickening meristem is first observable at the base of the first internode about 60 days after germination. It then becomes a cylinder in the main axis of the seedling. No stelar cambial cylinder forms in the primary root, hypocotyl, or stem because vascular cambium differentiation occurs neither in the pericycle opposite xylem points in the primary root nor in interfascicular parenchyma in the hypocotyl or stem. The primary vascular system of the stem appears anomalous because an inner and an outer ring of vascular bundles differentiate in the stele. Bundles of the inner ring anastomose in internodes, whereas those of the outer ring do not. Desmogen strands each of which is composed of phloem, xylem with both tracheids and vessels, and a desmogic cambium, differentiate from prodesmogen strands in conjunctive tissue. The parenchymatous cells surrounding desmogen strands then differentiate into elongated simple-pitted fibers and thick-walled fusiform cells that are about the same length as the primary thickening meristem initials.  相似文献   

10.
Changes in stem anatomy with radial position and height were studied for the arborescent palms Welfia georgii, Iriartea gigantea, Socratea durissima, Euterpe macrospadix, Prestoea decurrens, and Cryosophila albida. Vascular bundles are concentrated toward the stem periphery and peripheral bundles contain more fibers than central bundles. Expansion and cell wall thickening of fibers within vascular bundles continues throughout the life of a palm, even in the oldest tissue. Within individual vascular bundles, the fibers nearest the phloem expand first and fiber cell walls become heavily thickened. A front of expanding fibers moves outward from the phloem until all fibers within a vascular bundle are fully expanded and have thick cell walls. Peripheral vascular bundles differentiate first and inner bundles later. In the stem beneath the crown, vascular bundles and ground tissue cells show little or no size increase, but marked cell wall thickening during development for Welfia georgii. Beneath the crown, diameters of peripheral vascular bundles increase more than twofold for Iriartea gigantea, while diameters of central bundles do not increase. In Iriartea stems, ground tissue cells at the periphery elongate to accommodate expanding vascular bundles and cell walls become thickened to a lesser degree than in fibers; central ground tissue cells elongate markedly, but cell walls do not become thickened; and large lacunae form between central parenchyma cells. For Iriartea, Socratea, and Euterpe, sustained cell expansion results in limited, but significant increases in stem diameter. For all species, sustained cell wall thickening results in dramatic increases in stem stiffness and strength.  相似文献   

11.
The vascular bundles in the uppermost 1-4 mm of the coleoptiles of 9 varieties of Avena sativa, and also of Avena fatua L., all terminate essentially vertically with a small “cap” of tracheary elements. In Triticum vulgare Vill., by contrast, they terminate with a horizontal or downward-pointing section. This brings the two bundles more or less together and may result in their complete fusion, usually with a short vascular extension. In both genera the bundles contain one or more series of apparently active, undifferentiated cells. In the mature embryos the bundles are entirely procambial in nature, but xylem differentiation begins rapidly upon germination and proceeds towards the tip, which is reached by the time the coleoptile is 1.5 mm long; thereafter it proceeds basipetally and it may continue at the base after elongation has ceased there. The differentiation of stomata also appears to proceed basipetally. It may be deduced that the coleoptile cannot form lignin while in the embryo but begins to do so upon germination. Parallels are brought out between auxin production first by the endosperm and then by the tip, on the one hand, and lignification in the xylem and in the stomata, on the other.  相似文献   

12.
The apical 22 cm of a dormant, first-year sprout of Populus grandidentata was sectioned serially, and the primary and secondary xylem systems were studied microscopically and graphically reconstructed. A total of 15 nodes was present on the mature stem and 14 foliar primordia in the dormant bud. The vascular traces in the lower portion of the mature stem conformed to a 2/5 phyllotaxy while those of the upper portion and within the dormant bud conformed to a 3/8 phyllotaxy. The 2/5 to 3/8 phyllotactic transition occurred in an extremely precise and systematic two-step pattern: (1) The lateral traces shifted to a new point of origin on the parent central trace, and (2) three new central traces were initiated in sequence by divergences from left-traces. Metaxylem, when followed downward, conformed to the arrangement of the procambial trace system only within one orthostichy. Below this point, the metaxylem components of lateral traces physically separated from those of the protoxylem and continued downward on a new course. Metaxylem vessels produced by the trace cambium originated from a postulated vessel-generating center at the stem-petiole junction. Each metaxylem vessel developing basipetally through the primary body was continuous with a secondary vessel developing basipetally in the secondary body. Because secondary development closed the vascular cylinder, vessels originating from developing leaves or primordia situated at higher levels in the shoot were displaced radially outward when they entered the secondary xyelm. The distribution of vessels in the secondary xylem can therefore be accounted for by a knowledge of the production and distribution of metaxylem vessels in the primary body.  相似文献   

13.
Although monocotyledons lack a vascular cambium of the type found in dicotyledons and conifers, lateral meristems still play an important role in the establishment of their growth habits. The presence near the shoot apex of a primary thickening meristem (PTM), which is probably plesiomorphic in monocotyledons, predisposes evolution into the many pachycaul forms. A PTM occurs in virtually all monocotyledons, whereas the secondary thickening meristem (STM), which is morphologically similar, is limited to a few genera of Liliiflorae. these records are reviewed in a systematic context. To a greater or lesser extent in different taxa, the PTM is responsible for primary stem thickening, adventitious root production, and formation of linkages between stem, root and leaf vasculature. The STM largely contributes to the body of the stem. The sometimes obscure distinction between the two meristems, and their relationship with other stem meristems are discussed. For systematic purposes stem thickening in monocotyledons is separated into two characters: diffuse growth (as in palms), and growth by means of lateral meristems. The three states of the second character are represented by the first three of Mangin’s (1882) four categories (two herbaceous, the third arborescent): (1) The lateral meristem is limited in extent, and ceases activity after root formation. (2) It remains active for a limited period after cessation of root formation, contributing to the plant body. (3) It remains active throughout the life of the plant, contributing the bulk of the plant body.  相似文献   

14.
Leaves of Gleditsia triacanthos L. are served by three leaf traces that subdivide in the node to produce subsidiary bundles. The subsidiary bundles differentiate basipetally in the stem and acropetally in the petiole using the original leaf trace bundles (those that developed acropetally) as templates for their development. Within the pulvinus, the acropetal bundle components merge to form the rachis vasculature consisting of a semicircular arc and a ventral chord; several small bundles diverge to form ventral ridge bundles. Mixing of bundles occurs during vascularization of the lateral rachillae axes. Each diverging rachilla axis receives bundles from the semicircular arc, the ventral chord, and a ridge bundle in a relatively reproducible and predictable pattern. During this process the main rachis vasculature is gradually depleted, but the ridge bundles are reconstituted following divergence of each rachilla pair. The distal rachilla pair is vascularized by a bilateral partitioning of the entire rachis vasculature; a remnant of the central leaf trace terminates in a subulate terminal appendage. Vascularization of the bipinnate G. triacanthos leaf is compared to that of the simple Populus deltoides leaf.  相似文献   

15.
Development of the Populus leaf is presented as a model system to illustrate the sequence of events that occur during the sink to source transition. A Populus leaf is served by three leaf traces, each of which consists of an original procambial trace bundle that differentiates acropetally and continuously from more mature procambium in the stem and a complement of subsidiary bundles that differentiates bidirectionally from a leaf basal meristem. During development these subsidiary bundles maintain continuity through the meristematic region of the node. The basipetally developing subsidiary bunles form phloem bridges that serve to integrate adjacent leaf traces of the stem vasculature. Distal to the node the acropetally developing bundles from all three leaf traces are reoriented in a precise and orderly sequence to form tiers of petiolar bundles. These tiers of bundles extend into the midrib where bundles diverge at intervals as the major lateral veins. The dorsal-most tier of bundles extends to the lamina tip and each successive tier of bundles contributes to lateral veins situated more proximally in the lamina. Although the midrib and the major vein system differentiate acropetally in the lamina, they mature basipetally. Maturation of the mesophyll and other lamina tissues also mature basipetally. As a consequence of the basi-petal maturation process, the lamina tip matures very early and begins exporting photosynthates while the lamina base is still importing from other leaves. The transition of a leaf from sink to source status must therefore be considered as a progression of structural and functional events that occur in synchrony.  相似文献   

16.
Westing , A. H. (Purdue U., Lafayette, Indiana.) Peroxidase distribution in the leaders of erect and inclined Pinus strobus seedlings. Amer. Jour. Bot. 47(8) : 609–612. 1960.—A longitudinal gradient of peroxidase activity, decreasing basipetally, which was independent of stem inclination, was found in the leaders of Pinus strobus L. Inclination of intact leaders also had no effect on the transverse distribution of peroxidase activity, but when such leaders were decapitated and defoliated a transverse gradient, increasing from upper side to lower, did develop. Applications of α-naphthaleneacetic acid prevented this transverse redistribution from occurring. Mutilation also resulted in an increase of the overall level of peroxidase activity in the leaders.  相似文献   

17.
Parke , Robert V. (Colorado State U., Fort Collins.) Initial vascularization of the vegetative shoot, of Abies concolor. Amer. Jour. Bot. 50(5): 464–469. Illus. 1963.—In the dormant winter bud, the future vascular system of the shoot exists as a rather ill-defined system of procambial strands, which extends acropetally from the scale traces through a plate of thick-walled, deeply staining cells, the crown, and into the axis and the numerous foliar primordia making up the telescoped shoot. Each foliar primordium receives a single procambial strand or leaf trace. The procambial strands differentiate acropetally. No differentiated vascular tissue was observed in the dormant shoot. As the shoot elongates in the spring, vascular differentiation progresses at a rapid rate. In the leaf traces, protophloem differentiates acropetally. The protoxylem, which appears first in the axial region of the trace, differentiates acropetally into the foliar primordium and basipetally into the stem. The first-formed phloem elements are short-lived. They are nucleate and without sieve areas. In the protoxylem, the first-formed tracheids are mostly of the annular or spiral-thickened type.  相似文献   

18.
Differentiation of the primary thickening meristem (PTM) was investigated in seedlings and older plants of Phytolacca americana L. Initiation of the PTM occurs in pericycle or inner cortex at the hypocotyl-primary root junction of young plants. Differentiation of the PTM in stems occurs acropetally in a cylinder of randomly dividing cells termed the diffuse lateral meristem (DLM). The PTM produces secondary tissue to the inside (internal conjunctive tissue) and to the outside (external conjunctive tissue). Patches of xylem and phloem differentiate, opposite each other, in recently produced internal and external conjunctive tissue, respectively. The resulting strands (desmogen strands) of xylem and phloem are secondary in origin, and are peripheral to primary vascular tissues. Phloem of desmogen strands usually differentiates first. Xylem of desmogen strands is composed of both tracheids and vessel elements; the latter sometimes becoming occluded with tyloses and unidentified substances. As root and hypocotyl increase in diameter, cylinders of PTMs differentiate successively and centrifugally in external conjunctive tissue. Even though the first PTM differentiates in pericycle or inner cortex and later PTMs differentiate in external conjunctive tissue, all are referred to as PTMs because of their similar activity. Multiple rings of desmogen strands can be observed in transections of lateral roots, primary roots and hypocotyls. Throughout the length of the stem, only one ring of desmogen strands is present. Fewer rings of desmogen strands are present in the top of the hypocotyl and cotylendonary node, as compared to the subjacent hypocotyl, due to anastomoses of centrifugally differentiating desmogen strands.  相似文献   

19.
Developmental evidence shows that the acervulus, a distinctive flower cluster found only in the chamaedoreoid group of palms, is a form of cincinnus. In Hyophorbe indica Gaertner, the unit consists of a row of sessile flowers, the upper 3–4, staminate and the basal flower, pistillate. During initiation, each new flower originates from divisions in the T2 and underlying layers of the lower right or left flank of the apex of the preceding flower. A bract subtending the first flower is evident in early stages, is displaced basipetally as the flowers are formed, but is obscured when flowers are mature. No other bracts are associated with the unit. One to two outer bundles of the vascular cylinder of the rachilla develop first to the uppermost flower. Subsequently, bundles to other flowers arise as lower branches of the first bundle and from other, often small outer bundles of the rachilla that become floral traces or produce one or more branches to a flower. Many of the bundles supplying the flowers bend sharply downward in the cortex of the rachilla, apparently reflecting the basipetal sequence of floral inception.  相似文献   

20.
In the Araceae, as in many other monocotyledons, the stem undergoes gradual thickening as successive internodes are produced. Along with this primary thickening of the stem, successive foliage leaves will be larger and often more complex. In many species, in addition to these and other gradual changes, there are abrupt changes, metamorphoses, that occur under certain conditions. Some metamorphoses are the result of endogenous cycling (e.g., Syngonium, Rhektophyllum, Philodendron linnaei), some are a response to changes in conditions in the environment, usually the gain or loss of contact with a substrate (e.g., Syngonium, Monstera, Rhodospatha, Philodendron section Pteromischum), and some occur when the plant reaches a certain level of maturity (e.g., Monstera). Some of these latter changes are associated with a transition from monopodial to sympodial growth (e.g., Philodendron, Anthurium). Metamorphosis enhances the developmental plasticity of the Araceae in two distinct ways: it allows for a more complex relationship between size and shape in the development to maturity, and it allows shoots to engage in dispersal activities and developmental holding patterns when conditions are not suitable for development to the adult form and reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号