首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pisum sativum L. cv Alsweet (garden pea) and Lycopersicon esculentum Mill. flacca (mutant tomato) were chosen to evaluate the metabolic basis for plant injury from combinations of O3 + SO2. The plants were exposed under conditions reported to specifically alter O3 or SO2 toxicity; light versus dark exposures, and treatment with the fungal metabolite fusicoccin (FC), the O3 injury inhibitor N-[2-(2-oxo-1-imidazolidiny) ethyl]-N′-phenylurea (EDU), and the SO2 injury stimulator diethyldithiocarbamate (DDTC). Plants were grown in controlled environment chambers and exposed to combinations of O3 (0.05-0.2 microliters per liter) and SO2 (0.1-0.3 microliters per liter) for 2 hours. Peas treated with FC had the same or greater injury (quantified by visual rating) with O3 + SO2 exposures compared to plants not treated with FC. For plants with open stomata in the dark as well as light, i.e. FC-treated peas and tomatoes, there was no change or an increase in foliar necrosis with O3 + SO2 exposures in the dark versus light. Peas treated with EDU had an almost complete absence of O3 injury, no change in SO2 injury, and moderate decreases in injury from combinations of O3 + SO2 compared to plants not treated with EDU. Tomatoes treated with DDTC showed the same or less injury compared to plants not treated with DDTC and exposed to O3 or SO2. The plant responses to the experimental treatments and O3 + SO2 resembled O3 responses more than SO2 responses. The evidence for O3-like responses are: no change or increase in injury in the light versus dark, and EDU-induced decreases in injury. Evidences for SO2-like responses are: incomplete protection from injury with EDU, and no change or increased injury to FC-treated versus untreated plants. Thus, a metabolic mechanism affected by both pollutants may be associated with the combination injury, e.g. effects the plasma membrane.  相似文献   

2.
Hybrid poplar plants were exposed to 0.5 ppm SO2, 0.25 ppm O3 or 0.5 ppm SO2 + 0.25 ppm O3, 12 hr/day for 24 days to ascertain their effects on leaf growth and abscission. The data revealed that both O3 alone and O3 + SO2 promoted leaf abscission, while SO2 alone had no effect. Leaf area and dry weight were reduced while leaf abscission was stimulated by ozone fumigation. The interaction found between SO2 and O3, with all the parameters measured, was an antagonistic relationship in which SO2 reduced the toxic effect of ozone. The data analyzed, in relation to leaf position, demonstrated that ozone did not affect development of the six youngest rapidly growing leaves. However, ozone significantly reduced both leaf area and leaf weight, at later stages of development.  相似文献   

3.
Plants of Pisum sativum L. `Alsweet' were grown under a controlled environment and exposed to SO2 and O3 to determine whether changes in stomatal aperture during exposure were related to subsequent leaf injury. Stomata consistently closed with injurious levels of SO2 and O3. Measurements with diffusion porometers demonstrated 75 and 25% lower conductance with SO2 and O3 exposures, respectively, compared to the conductance of control plants. Stomata also showed a closing response with noninjurious levels of SO2 but an opening response with noninjurious levels of O3. Stomata closed to the same degree with combinations of SO2 plus O3 as with SO2 alone. Stomata of expanding leaves closed more during pollutant exposures than stomata of expanded leaves. The abaxial and adaxial stomata both exhibited closure with SO2 and combinations of SO2 plus O3, but abaxial stomata tended to close and adaxial stomata tended to open with exposure to O3 alone.  相似文献   

4.
During one growing period, 5-year-old spruce trees (Picea abies L., Karst.) were exposed in environmental chambers to elevated concentrations of carbon dioxide (750 cm3 m?3) and ozone (008 cm3 m?3) as single variables or in combination. Control concentrations of the gases were 350cm3 m?3CO2 and 0.02 cm3 m ?3 ozone. To investigate whether an elevated CO2 concentration can prevent adverse ozone effects by reducing oxidative stress, the activities of the protective enzymes superoxide dismutase, catalase and peroxidase were determined. Furthermore, shoot biomass, pigment and protein contents of two needle age classes were investigated. Ozone caused pigment reduction and visible injury in the previous year's needles and growth reduction in the current year's shoots. In the presence of elevated concentrations of ozone and CO2, growth reduction in the current year's shoots was prevented, but emergence of visible damage in the previous year's needles was only delayed and pigment reduction was still found. Elevated concentrations of ozone or CO2 as single variables caused a significant reduction in the activities of superoxide dismutase and catalase in the current year's needles. Minimum activities of superoxide dismutase and catalase and decreased peroxidase activities were found in both needle age classes from spruce trees grown at enhanced concentrations of both CO2 and ozone. These results suggest a reduced tolerance to oxidative stress in spruce trees under conditions of elevated concentrations of both CO2 and ozone.  相似文献   

5.
The ambient pollution climate at the Liphook forest fumigation site, where coniferous trees were fumigated with SO2 and O3, for 4 years under field conditions, was characteristic of the fringes of the areas where pollutant effects are a problem. Experimental treatments increased SO2 concentrations to levels more characteristic of Eastern Europe, and summer O3 concentrations by 30%. Deposition of SO2 to the soil between the trees (inferred from shallow lysimeters) was significant, the deposition velocity being 2–1 mms?1. Deposition to Scots pine and Sitka spruce canopies was greater, deposition velocities being 8.5 and 9.4 mm s?1, respectively. These high values may perhaps be explained by co-deposition with NH3. Calculations assume that dry deposition was the sole source of SO42? gain in throughfall, and that there was no significant retention by the trees. There was a trend for O3 to enhance SO2 deposition to both soil and trees. Fumigation with SO2 led to a significant increase in leaching of cations from foliage. Each species neutralized about 63% of the dry-deposited SO2, predominantly by ion exchange for Ca and K. Equations are provided which allow calculation of foliar leaching given SO2 concentrations or SO42? deposition. Fumigation increased the rate of nutrient cycling considerably, without affecting foliar concentrations or damaging the trees. Ozone treatments did not enhance foliar leaching, calling into question some suggested mechanisms for the causes of forest decline.  相似文献   

6.
Effect of SO(2) and O(3) on Production of Antioxidants in Conifers   总被引:3,自引:3,他引:0       下载免费PDF全文
Production of antioxidants was investigated in needles of fir (Abies alba Mill.) and spruce (Picea abies (L.) Karst) after exposure to low concentrations of SO2, O3, and a combination of both pollutants. Glutathione reacted most sensitively to pollutants followed by vitamin E and vitamin C. In spruce needles, the overall increase of antioxidants after exposure to air pollutants was lower than in needles of fir. SO2 was more potent than O3. Maximum increase of antioxidants was found in needles after exposure of trees to SO2 + O3.  相似文献   

7.
Fast urbanization has led to ozone (O3) being the main pollutant in summer in most of China. To assess future ground-level O3 effects on the service of urban greening species and clarify the underlying mechanism of O3 damage, four common urban greening species, Ailanthus altissima (AA), Fraxinus chinensis (FC), Platanus orientalis (PO) and Robinia pseudoacacia (RP) were exposed to non-filtered air (NF) and to elevated O3 (E-O3) in open-top chambers. E-O3 induced visible injury in all species as well as microscopic alterations such as collapse of the palisade parenchyma cells, callose accumulation, or chloroplast and mitochondrial accelerated senescence. E-O3 significantly reduced light-saturated CO2 assimilation (Asat), the maximum activity of Rubisco (Vcmax), the maximum electron transport rate (Jmax), and fluorescence parameters such as the quantum yield of noncyclic electron transport (ϕPSII), and the quenching of photochemical efficiency of PSII (qP). It also increased total antioxidant capacity, phenolics and ascorbate contents. No significant interaction between O3 and species was found in photosynthetic performance and antioxidant systems, suggesting that the four species selected were sensitive to O3. Of all four species, AA was the most sensitive species due to a combination of earlier injury onset, anatomical features, lower antioxidant responses and higher stomatal conductance. The sensitivity of tree species to O3 is a factor to be considered for urban greening. Ozone may affect important urban forest ecosystem services by reducing CO2 assimilation.  相似文献   

8.
Joint Action of O(3) and SO(2) in Modifying Plant Gas Exchange   总被引:5,自引:2,他引:3       下载免费PDF全文
The joint action of O3 and SO2 stress on plants was investigated by determining the quantitative relationship between air pollutant fluxes and effects on stomatal conductance. Gas exchange measurements of O3, SO2, and H2O vapor were made for Pisum sativum L. (garden pea). Plants were grown under controlled environments, and O3, SO2, and H2O vapor fluxes were evaluated with a whole-plant gas exchange chamber using the mass-balance approach. Maximum O3 and SO2 fluxes per unit area (2 sided) into leaves averaged 8 nanomoles per square meter per second with exposure to either O3 or SO2 at 0.1 microliters per liter. Internal fluxes of either O3 or SO2 were reduced by up to 50% during exposure to combined versus individual pollutants; the greatest reduction occurred with simultaneous versus sequential combinations of the pollutants. Stomatal conductance to H2O was substantially altered by the pollutant exposures, with O3 molecules twice as effective as SO2 molecules in inducing stomatal closure. Stomatal conductance was related to the integrated dose of pollutants. The regression equations relating integrated dose to stomatal conductance were similar with O3 alone, O3 plus added SO2, and O3 plus SO2 simultaneously; i.e. a dose of 100 micromoles per square meter produced a 39 to 45% reduction in conductance over nonexposed plants. With SO2 alone, or SO2 plus added O3, a dose of 100 micromoles per square meter produced a 20 to 25% reduction in conductance. When O3 was present at the start of the exposure, then stomatal response resembled that for O3 more than the response for SO2. This study indicated that stomatal responses with combinations of O3 and SO2 are not dependent solely on the integrated dose of pollutants, but suggests that a metabolic synergistic effect exists.  相似文献   

9.
Samples of current-year and 1-year-old foliage were taken from Norway spruce (Picea abies (L.) Karst.) trees in April 1991, 4 months after a 3–4 year controlled fumigation with O3 and SO2 in the open at Liphook, south-east England. Trees were grown in seven plots, and treated in a factorial design with three levels of SO2 and two levels of O3 (ambient and c. 1.3 × ambient), with an extra ambient air plot. All statistical analyses were made on plot means. Leaf wettability, as measured by the contact angle of water droplets, was significantly affected by needle age and by SO2 treatment (P≤0–05. in older needles, decreasing with increasing SO2 concentration. There was no effect of O3 on wettability, and no effect of any treatment on amounts of surface wax extracted by immersion of needles in chloroform. Electrolyte leakage rates from detached current-year needles were not affected by prior exposure to O3, but decreased significantly (P= 0.034) with increasing exposure to SO2. There was no detectable effect of fumigation on the rate of water loss from detached needles. Similarly, there was no effect of fumigation on the dry weight/fresh weight ratio of needles. The total sulphur content of needles increased significantly (P≤0.0001) with exposure to SO2 and with needle age. Amounts of water-extractable sulphate, however, varied greatly among plots, but with no pattern with respect to fumigation treatment. It is concluded that leaf wettability and electrolyte leakage rates may be good indicators of the persistent effects of SO2 on Norway spruce growing in the open air, and that the observed changes in leaf surface properties in response to SO2 fumigation have implications for the processes, both biotic and abiotic, that occur on leaf surfaces.  相似文献   

10.
Herein we describe a pathogenic role for the Pseudomonas aeruginosa type three secretion system (T3SS) needle tip complex protein, PcrV, in causing lung endothelial injury. We first established a model in which P. aeruginosa wild type strain PA103 caused pneumonia-induced sepsis and distal organ dysfunction. Interestingly, a PA103 derivative strain lacking its two known secreted effectors, ExoU and ExoT [denoted PA103 (ΔU/ΔT)], also caused sepsis and modest distal organ injury whereas an isogenic PA103 strain lacking the T3SS needle tip complex assembly protein [denoted PA103 (ΔPcrV)] did not. PA103 (ΔU/ΔT) infection caused neutrophil influx into the lung parenchyma, lung endothelial injury, and distal organ injury (reminiscent of sepsis). In contrast, PA103 (ΔPcrV) infection caused nominal neutrophil infiltration and lung endothelial injury, but no distal organ injury. We further examined pathogenic mechanisms of the T3SS needle tip complex using cultured rat pulmonary microvascular endothelial cells (PMVECs) and revealed a two-phase, temporal nature of infection. At 5-hours post-inoculation (early phase infection), PA103 (ΔU/ΔT) elicited PMVEC barrier disruption via perturbation of the actin cytoskeleton and did so in a cell death-independent manner. Conversely, PA103 (ΔPcrV) infection did not elicit early phase PMVEC barrier disruption. At 24-hours post-inoculation (late phase infection), PA103 (ΔU/ΔT) induced PMVEC damage and death that displayed an apoptotic component. Although PA103 (ΔPcrV) infection induced late phase PMVEC damage and death, it did so to an attenuated extent. The PA103 (ΔU/ΔT) and PA103 (ΔPcrV) mutants grew at similar rates and were able to adhere equally to PMVECs post-inoculation indicating that the observed differences in damage and barrier disruption are likely attributable to T3SS needle tip complex-mediated pathogenic differences post host cell attachment. Together, these infection data suggest that the T3SS needle tip complex and/or another undefined secreted effector(s) are important determinants of P. aeruginosa pneumonia-induced lung endothelial barrier disruption.  相似文献   

11.
 Effects of SO2, aqueous fluoride (NaF) and a solution of nitrogen compounds (NH4NO3) on the visible symptoms, pollutant accumulation and ultrastructure of Scots pine (Pinus sylvestris L.) and Norway spruce [Picea abies (L.) Karst.] seedlings were studied in an open-air experiment lasting for 3 consecutive years. Visible injury symptoms were most pronounced in combination exposures and whenever F was applied. Visible symptoms correlated well with needle pollutant concentrations. Exposure to NaF increased needle F contents particularly when F was applied with SO2 or NH4NO3. This suggests that a reduction in N or SO2 emissions, in F polluted areas, could improve the condition of conifers via decreased accumulation of phytotoxic F in the needles. Norway spruce needles accumulated 2 – 10 times as much S and F as those of Scots pine. Microscopic observations showed various changes in the needle mesophyll cell ultrastructure. In both species, exposure to SO2 increased significantly the amount of cytoplasmic vacuoles, suggesting detoxification of excess sulphate or low pH. F treatments resulted in a significant enlargement of plastoglobuli in Scots pine and a darkening of plastoglobuli in Norway spruce. All exposures enhanced the accumulation of lipid bodies. An increased portion of translucent plastoglobuli was most pronounced in N treatments. Many of the ultrastructural changes and visible symptoms appeared only as number of years exposed increased, indicating that long-term experiments are needed. Both visible symptoms and ultrastructural changes pointed to the more pronounced sensitivity of Norway spruce compared to Scots pine. Ultrastructural results mostly supported earlier qualitative observations of F, N and SO2 effects on needle mesophyll cell ultrastructure. However, no reduction of thylakoids in SO2 containing exposure or curling of thylakoids in F exposure could be detected in the present study. Received: 5 December 1994 / Accepted: 28 April 1995  相似文献   

12.
Plant growth depends on the coordinated acquisition and allocation of carbon, water, and nutrient resources to the major plant organs (root, stem, leaf, flower, and fruit) and to the major classes of metabolic function (vegetative growth, maintenance, defense, and reproduction). Air pollutants like SO2, NO2, and O3 can directly damage plant tissues and disrupt normal patterns of resource acquisition and allocation. These disruptions in turn potentially will influence the plant’s ability to defend itself against pests and pathogens. This review summarizes the quantitative and qualitative changes that have been observed when plants are exposed to low levels of SO2, NO2, and O3; the following generalizations emerge:
  1. Root biomass is reduced more than shoot biomass in plants exposed to SO2 or O3, but NO2 does not appear to induce the differential suppression of above-versus below-ground organs.
  2. Quantitative allocation to leaves increases and to stem decreases under SO2 pollution regimes; too few data are available to generalize about O3 or NO2 effects on leaf: stem ratio.
  3. Root carbohydrate concentrations sometimes increase and sometimes decrease after SO2 or O3 fumigations. Leaf nitrogen concentrations tend to decrease after exposure to air pollutants, and leaf carbohydrate concentrations can increase or decrease. Too few data on leaf concentrations of lipids and secondary chemicals are available to justify any generalizations on pollutant responses.
  4. Reproduction is suppressed by O3, SO2, and NO2, with O3 appearing to have the most marked effects. Seed lipid and protein composition can be altered by exposure to pollutants. While both quantitative and qualitative changes in plant resource allocation after exposure to pollutants are common, the importance of these diverse changes for plant-pest and plant-pathogen interaction requires more comprehensive study. Ideally, the time course of plant growth and of metabolite pools critical to particular pests or pathogens should be followed in plants exposed to realistic pollutant regimes and related to pest or pathogen performance on the treated plants.
  相似文献   

13.
Tropospheric ozone (O3) is an important stressor in natural ecosystems, with well‐documented impacts on soils, biota and ecological processes. The effects of O3 on individual plants and processes scale up through the ecosystem through effects on carbon, nutrient and hydrologic dynamics. Ozone effects on individual species and their associated microflora and fauna cascade through the ecosystem to the landscape level. Systematic injury surveys demonstrate that foliar injury occurs on sensitive species throughout the globe. However, deleterious impacts on plant carbon, water and nutrient balance can also occur without visible injury. Because sensitivity to O3 may follow coarse physiognomic plant classes (in general, herbaceous crops are more sensitive than deciduous woody plants, grasses and conifers), the task still remains to use stomatal O3 uptake to assess class and species’ sensitivity. Investigations of the radial growth of mature trees, in combination with data from many controlled studies with seedlings, suggest that ambient O3 reduces growth of mature trees in some locations. Models based on tree physiology and forest stand dynamics suggest that modest effects of O3 on growth may accumulate over time, other stresses (prolonged drought, excess nitrogen deposition) may exacerbate the direct effects of O3 on tree growth, and competitive interactions among species may be altered. Ozone exposure over decades may be altering the species composition of forests currently, and as fossil fuel combustion products generate more O3 than deteriorates in the atmosphere, into the future as well.  相似文献   

14.
A second order rotatable design was used to obtain polynomial equations describing the effects of combinations of sulfur dioxide (SO2) and ozone (O3) on foliar injury and plant growth. The response surfaces derived from these equations were displayed as contour or isometric (3-dimensional) plots. The contour plots aided in the interpretation of the pollutant interactions and were judged easier to use than the isometric plots. Plants of `Grand Rapids' lettuce (Lactuca sativa L.), `Cherry Belle' radish (Raphanus sativus L.), and `Alsweet' pea (Pisum sativum L.) were grown in a controlled environment chamber and exposed to seven combinations of SO2 and O3. Injury was evaluated based on visible chlorosis and necrosis and growth was evaluated as leaf area and dry weight. Covariate measurements were used to increase precision. Radish and pea had greater injury, in general, that did lettuce; all three species were sensitive to O3, and pea was most sensitive and radish least sensitive to SO2. Leaf injury responses were relatively more affected by the pollutants than were plant growth responses in radish and pea but not in lettuce. In radish, hypocotyl growth was more sensitive to the pollutants than was leaf growth.  相似文献   

15.
Garden peas (Pisum sativum L. cv Alsweet) and a tomato mutant (Lycopersicon esculentum Mill. var flacca) were sprayed with fusicoccin, a fungal toxin affecting membrane transport properties, before exposure to SO2 or O3. Tomatoes treated with 10 micromolar fusicoccin and exposed to SO2 (0.6 microliter per liter for 2 hours) exhibited twice as much foliar necrosis as untreated plants exposed to SO2. Peas treated with fusicoccin and exposed to SO2 (0.7 to 1.0 microliter per liter for 2 hours) exhibited 2 to 6 times more injury than untreated plants exposed to SO2. Peas treated with fusicoccin and exposed to O3 had less injury than untreated plants exposed to O3 (0.1 to 0.3 microliter per liter for 2 hours). Several lines of evidence suggested that the fusicoccin enhancement of SO2 injury is not the result of increased gas exchange, i.e. the tomato mutant has permanently open stomata under all conditions, and in peas fusicoccin had no effect on SO2 or H2O flux in plants exposed to 0.12 microliter per liter SO2. However, a 21% greater leaf conductance in fusicoccin treated versus untreated plants indicated the possibility of some differences in gas exchange for peas exposed to 1.0 microliter per liter SO2.  相似文献   

16.
Difference between effects of sulfur dioxide (SO2) and ozone (O3) on groundnut plants (Arachis hypogaea L.) was studied by use of an exposure system of enzymatically-isolated mesophyll cells. SO2 inhibited photosynthesis of intact groundnut leaves but induced no visible injury on leaves. SO2 also inhibited photosynthesis of isolated mesophyll cells but did not kill the cells, suggesting that SO2 inhibits photosynthesis by attacking rather specifically the photosynthetic apparatus in chloroplasts. O3 inhibited photosynthesis of intact leaves and at the same time induced visible injury corresponding to the extent of photosynthesis inhibition. O3 also inhibited photosynthesis of isolated mesophyll cells and killed the cells to the extent corresponding to photosynthesis inhibition, suggesting that O3 inhibits photosynthesis not directly by attacking the photosynthetic apparatus but indirectly by killing cells. Since the response of intact leaves to each pollutant resembled that of isolated mesophyll cells, the difference between responses of intact leaves to both pollutants may considerably reflect that of mesophyll cells.  相似文献   

17.
The increase in alkalinity and SO4 2? in softwater lakes can negatively affect pristine isoetid population because the increase in alkalinity and SO4 2? can stimulate sediment mineralization and consequently cause anoxia. The consequences of increased sediment mineralization depend on the ability of isoetids such as Lobelia dortmanna to oxidize the rhizosphere via radial O2 loss. To study how alkalinity and SO4 2? affect the isoetid L. dortmanna, and if negative effects could be alleviated by neighboring plants, three densities of L. dortmanna (“Low”?=?64 plants m?2, “Medium”?=?256 plants m?2 and “High”?=?1,024 plants m?2) were exposed to elevated alkalinity in the water column, or a combination of both elevated alkalinity and SO4 2?, and compared to a control situation. The combination of SO4 2? and alkalinity significantly increased mortality, lowered areal biomass and reduced actual photosynthetic efficiency. Plant density did not significantly alleviate the negative effects caused by SO4 2? and alkalinity. However, actual photosynthetic efficiency was significantly positively correlated to redox potential in the sediment, indicating a positive relationship between plant performance and sediment oxidation. The negative effects on L. dortmanna were probably caused by long periods of tissue anoxia by itself or in combination with H2S intrusion. Therefore, increase in both SO4 2? and alkalinity surface water can dramatically affect L. dortmanna populations, causing reduction or even disappearance of this icon species.  相似文献   

18.
Photosynthetic performance, mineral content and chloroplast pigments were investigated in August-September 1988 and 1989 in Norway spruce trees (Picea abies (L.) Karst.) exposed to SO2, and O3 in an open-air fumigation facility at Liphook, England. The data do not suggest a treatment effect on the mineral content of the needles in terms of nutrient leaching from the foliage. In addition, there were no direct SO2 and/or O3 effects on the content and/or composition of the chloroplast pigments. However, the long-term application of SO2 resulted in a depression of net photosynthesis under light saturation and ambient CO2 (A 340) which was probably caused by a treatment-related depression of the carboxylation efficiency (CE). In 1989, the supposed treatment effects were apparently masked by an insufficient N-supply and probably also by low water availability during summer. However, fumigation appeared to accelerate an N-deficiency-related decrease of CE, stomatal closure and the age-dependent development of the chlorophyll content of the needles. In 1989, an observed depression of the photosynthetic capacity (A2500) was in part accompanied by a decrease in light use efficiency (α), suggesting an enhanced photosensitivity resulting from the impact of several possible interacting stresses (drought, N deficiency and fumigation). The results support the general conclusion that long-term low-level SO2 dosage adversely affects the photosynthetic performance of the needle, whether directly or indirectly, and may also interact with other environmental stresses. The findings of our investigations are discussed with regard to the hypothesis of forest decline in the mountain regions of the Fichtelgebirge (north-eastern Bavaria, Germany).  相似文献   

19.
At six sites in central Germany consequences of SO2, NOX and O3 deposition and of acid precipitation on canopy throughfall of sulphate, nitrate, ammonium, organic acids and of metal cations from Norway spruce crowns were investigated in the field. Measured canopy throughfall rates (mmol ion kg-1 needle dw a-1 are separated in (i) background ion throughfall rates in clean air and (ii) trace gas-(or acid interception)-dependent throughfall rates at ambient trace gas concentrations. Based on synchronously measured pollution, precipitation and canopy throughfall data, statistical response functions are given, which allow the separate estimation of annual rates of sulphur and nitrogen deposition into spruce canopies if only annual means of SO2 or NO2 concentrations in air are known. The specific SO2 deposition rate of (0.841±0.214) mmol S kg-1 needle dw a-1 (nPa SO2 Pa-1)-1 is 2.3 times higher than the specific stomatal SO2 uptake. The NO2-dependent nitrogen deposition of (2.464±0.707) mmol N kg-1 needle dw a-1 (nPa NO2 Pa-1)-1 is 2.2 times higher than the specific stomatal NOX (NO2+NO) uptake. These ratios (2.32.2) are explained by the percentage of annual hours with open needle stomata. The shape of observed epicuticular SO2 and NOX deposition curves and of stomatal SO2 and NOX uptake curves are congruent. As for stomatal NOX uptake, there is an apparent compensation point at (5 to 8) nPa NO2 Pa-1. There is significant SO2-dependent canopy throughfall of Ca>K>Al>Mg>Fe in this order of relative importance. NOX deposition in spruce canopies reduces K+ throughfall and it weakly promotes throughfall of Mn2+ and Zn2+. There was no significant codeposition of sulphate and ammonium and no ion exchange of intercepted H3O+ with nutrient cations at the measured ambient pH values of the precipitation water. In the presence of O3, throughfall of Mn2+ is reduced and throughfall of K+, Ca2+ and Al3+ is enhanced. In the cooperative presence of SO2, NO2 and O3 pollution in the field there is a 1.3-fold increase of the annual K+ demand and a 1.5-fold Mg2+ demand of spruce canopies relative to the situation in clean air. This trace gas-dependent additional cation demand of spruce canopies corresponds to a needle loss percentage of (23 to 33)% if the additional K+ and Mg2+ throughfall could not be recycled in spruce ecosystems. Observed canopy thinning ranges from (13 to 26)% at the investigated six spruce stands.Abbreviations Aspec Specific needle surface area per kg needle dry matter (m2kg-1 needle dw) - Atot Total needle surface of spruce stands (ha ha-1) - [gas]a Ambient trace gas concentration (gas=SO2; NO2 or O3) in air (nPa Pa-1=ppb) - GP Number of days per annual growth period d a-1) - ICH30 + Acid interception rate (Eq H3O+ kg-1 needle dw a-1) - ko Trace gas-independent ion throughfall rate constant (mmol kg-1 needle dw a-1) - kgas SO2-,NO2-or O3-dependent ion throughfall rate per unit of trace gas pollution (mmol kg-1 needle dw a-1 (nPa Pa-1)-1) - kH30 Specific H3O+/Me+ exchange ratio (mol mol-1) - Lo Background throughfall rate at [gas]a=0 (mmol kg-1 needle dw a-1) - Lion Canopy throughfall rate of ions (mmol kg-1 needle dw a-1) - L'ion Trace gas dependent ion throughfall (mEq kg-1 needle dw a-1 (nPa Pa-1)-1) - LAI Leaf area index of the canopy (m2 projected needle surface m-2 ground) - Me+ Equivalents of metal cations (Eq) - N Stock of needles of spuce stands in the field (kg needle dw ha-1) - P% Percentage of needle loss relative to a healthy reference (%) - r Pearson correlation coefficient (no dimension) - R COO--Sum of all organic anion equivalents Cat+ - An- (Eq kg-1 needle dw a-1) - An- Sum of all measured inorganic anion equivalents (Eq kg-1 needle dw a-1) - Cat+ Sum of all measured inorganic cation equivalents (Eq kg-1 needle dw a-1)  相似文献   

20.
 One- and 2-year-old Pinus sylvestris saplings were exposed to chronic doses of ozone (O3) and sulphur dioxide (SO2) in short-term (3 months) and long-term (18 months) experiments. Microsomal and plasma membrane fractions were purified by phase partitioning from current-year needles. The following membrane enzyme activities were determined in the microsomal and/or purified plasma membrane fractions: K+, Mg2+-ATPase (EC 3.6.1.3), NADH ferricyanide oxidoreductase (EC 1.6.99.3), NADH-duroquinone reductase (EC 1.6.5.1), NADH oxidase type I (EC 1.6.99.2), NADH oxidase type II or peroxidase-like enzyme (EC 1.11.1.7) and pyrophosphatase (EC 3.6.1.1). NADH oxidase type I was slightly stimulated in the microsomal fraction after a short-term exposure to O3 whereas NADH-dependent duroquinone reductase was not affected by this pollutant. However, in the long term experiment, NADH oxidase type II measured in the plasma membrane fraction was more than 2-fold stimulated in the SO2 treated pines and more than 4-fold when O3 was added to SO2. However, pyrophosphatase was decreased by 50% in trees treated with SO2+O3 and remained unchanged in the SO2 treatment, indicating that this enzyme is probably sensitive to oxidation. K+, Mg2+-ATPase showed a trend towards an enhancement of activity when exposed to chronic concentrations of air pollutants, this enhancement was more important in the long-term experiment after the combined effect of SO2 and O3. However, the K+-stimulated component was inhibited by the combination of both pollutants. Finally, NADH ferricyanide reductase was significantly enhanced after O3 and SO2+O3 exposures appearing as the most sensitive oxidoreductase to these air pollutants. The stimulation of ATPase and membrane oxidoreductases could facilitate the adaptation and defense of trees by maintaining an adequate redox potential in the plasma membrane region and perhaps stimulating the reduction of extracellular electron acceptors generated by the exposure to air pollutants. Received: 15 September 1997 / Accepted: 4 May 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号