首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Current-year, 1-year-old, 2-year-old, and 3-year-old needles of 25- to 30-year-old Pinus resinosa trees were separately exposed to C14O2 at various times during the growing season. Currently produced C14-photosynthate was preferentially mobilized in the following order: second-year cones > current needles > current internodes > first-year conelets. A changing seasonal pattern was shown in sources of current photosynthate for growth of cones and shoots. One-year-old needles were the major source of current photosynthate for growth of both cones and shoot internodes. During June the 2- and 3-year-old needles contributed appreciable amounts of current photosynthate to both cones and developing shoots, but after late June their contribution was slight. The supply of carbohydrates to all tissues, except 2nd-year cones, from the three age classes of old needles declined late in the season as tissues mobilized increasingly more carbohydrates from current-year needles. Nevertheless, the bulk of the C14-photosynthate produced by current-year needles was retained by them. The preferential mobilization of carbohydrates by reproductive tissues over vegetative tissues is emphasized as is the importance of both reserve and currently produced carbohydrate for growth of various tissues.  相似文献   

2.
The advantages of canopy seed retention (serotiny) for plants inhabiting fire‐prone ecosystems are well documented. However, very few species are completely serotinous and non‐fire induced opening of serotinous fruits is commonly observed (weak serotiny). Two non‐mutually exclusive causes are envisaged to contribute to this process: mechanical changes in serotinous fruits mediated by climatic conditions (e.g. drought) or the costs of maintenance for the plant of these long‐lasting structures. However, their relative contribution to the spontaneous opening of serotinous fruits remains elusive as well as the consequences for the build‐up of the canopy seed bank and inter‐individual differences in serotiny. In this study we monitored the dynamics of cone production and cone opening in the weakly serotinous Pinus halepensis for five years (2004–2008), including two severe drought episodes (2005, 2006). Drought decreased the production of conelets, increased the abortion of immature cones, reduced the seed quality in the cohorts of cones produced during these years, and increased the opening of serotinous cones. During the first drought episode, a higher proportion of serotinous cones opened in those pines bearing a larger crop of younger cones. This suggests that not only passive changes induced by drought but also competition among cones for resources (e.g. water) might be involved in this process. The opening of serotinous cones in pines bearing more cones made inter‐individual differences in the size of the canopy cone bank to narrow or even to reverse from 2004 to 2008. These results may help to understand the decrease in serotiny when pines grow and accumulate more cones and the large inter‐individual variability in the degree of serotiny observed in P. halepensis forests. In addition, the negative effects of drought episodes for the size of the canopy cone bank and the seeds contained can be an unexplored cause of post‐fire regeneration constraint.  相似文献   

3.
Qualitative and quantitative understanding of the chemical linkages between the three major biochemical components (cellulose, hemicellulose and lignin) of plant cell walls is crucial to the understanding of cell wall structure. Although there is convincing evidence for chemical bonds between hemicellulose and lignin and the absence of chemical bonds between hemicellulose and cellulose, there is no conclusive evidence for the presence of covalent bonds between cellulose and lignin. This is caused by the lack of selectivity of current GC/MS-, NMR- and IR-based methods for lignin characterisation as none of these techniques directly targets the possible ester and ether linkages between lignin and cellulose. We modified the widely-accepted “standard” three-step extraction method for isolating cellulose from plants by changing the order of the steps for hemicellulose and lignin removal (solubilisation with concentrated NaOH and oxidation with acetic acid-containing NaClO2, respectively) so that cellulose and lignin could be isolated with the possible chemical bonds between them intact. These linkages were then cleaved with NaClO2 reagent in aqueous media of contrasting 18O/16O ratios. We produced cellulose with higher purity (a lower level of residual hemicellulose and no detectable lignin) than that produced by the “standard” method. Oxidative artefacts may potentially be introduced at the lignin removal stage; but testing showed this to be minimal.Cellulose samples isolated from processing plant-derived cellulose–lignin mixtures in media of contrasting 18O/16O ratios were compared to provide the first quantitative evidence for the presence of oxygen-containing ester and ether bonds between cellulose and lignin in Zea mays leaves. However, no conclusive evidence for the presence or lack of similar bonds in Araucaria cunninghamii wood was obtained.  相似文献   

4.
Summary Supplementing oat straw in SSF by Polyporus sp A-336 with xylose, mannose, glucose and arabinogalactan at levels of 5 and 10% of straw weight stimulated lignin degradation and cellulose hydrolysis. Degradation of lignin, hemicellulose and cellulose was monitored for 30 days in plain straw, and straw plus xylose and showed that xylose shortened the lag in lignin breakdown and slowed hemicellulose utilization. At 24 days, similar polymer losses occurred in both systems and enzymatic cellulose hydrolysis had reached a maximum of 47% weight loss.  相似文献   

5.
Summary The quantitative changes in constituents of rice straw during different stages of growth of the fungus Pleurotus flabellatus were investigated. Cellulose, hemicellulose(s), lignin, total carbon and total nitrogen showed a continuous decrease from inoculation until the end of fruit body harvesting, whereas free sugars, total ash and C/N ratio increased. As calculated on constant ash basis, 14 and 13.9% of cellulose, 6.6 and 7% of hemicellulose(s) and 4 and 1.5% of lignin were decomposed during the mycelial growth and fructification respectively. Total N decreased by 0.16 and 0.23% during the mycelial growth and fructification respectively. The progressive breakdown of cellulose and hemicellulose(s) was correlated to an apparent increase in the activities of celullase and hemicellulase(s). The trend in development of cellulases and -glucosidase activities in the substrate during different stages of its growth was demonstrated.  相似文献   

6.
Kinetic behavior of liquefaction of Japanese beech in subcritical phenol   总被引:1,自引:0,他引:1  
Mishra G  Saka S 《Bioresource technology》2011,102(23):10946-10950
Non-catalytic liquefaction of Japanese beech (Fagus crenata) wood in subcritical phenol was investigated using a batch-type reaction vessel. After samples were treated at 160 °C/0.9 MPa–350 °C/4.2 MPa for 3–30 min, they were fractionated into a phenol-soluble portion and phenol-insoluble residues. These residues were then analyzed for their chemical composition. Based on the obtained data, the kinetics for liquefaction was modeled using first-order reaction rate law. Subsequently, the liquefaction rate constants of the major cell wall components including cellulose, hemicellulose, and lignin were determined. The different kinetic mechanisms were found to exist for lignin and cellulose at two different temperature ranges, lower 160–290 °C and higher 310–350 °C, whereas for hemicellulose, it was only liquefied in the lower temperature range. Thus, the liquefaction behaviors of these major cell wall components highlighted hemicellulose to be the most susceptible to liquefaction, followed by lignin and cellulose.  相似文献   

7.
Summary A random sample of 80 families of the B8HD smooth bromegrass (Bromus inermis Leyss.) population were tested in three environments for forage yield and cell wall constituents. Expected progress from one cycle of family selection was computed for single-trait selection and multiple-trait restricted selection. Expected gains were compared to desired goals and actual results from one cycle of phenotypic selection. Desired goals were: Model I = reduced lignin and cellulose, with increased hemicellulose, resulting in no change in cell wall content; Model II = reduced lignin and cellulose with no change in hemicellulose; or Model III = reduced lignin, cellulose, and hemicellulose. Single-trait selection for high hemicellulose in first harvest or low cellulose in second harvest had the best expected responses, of any single trait, for Model I. Possible undesirable effects of selection for low cellulose would be a reduction in forage yield potential. Multiple-trait restricted selection was judged to be more effective, with responses all in the desired direction, by specifying increased hemicellulose in index development. Selection in second harvest was expected to have similar responses as first harvest, except for a greater increase in forage yield. Development of Models II or III is expected to be difficult due to a negative correlation estimate between first and second harvest cell wall concentration.  相似文献   

8.
The litter bag method was used in this study on the decomposition of twigs of an oak (Quercus liaotungensis Koidz.) which is dominant in the warm temperate deciduous forests. This continual 5-year investigation was to measure the changes of organic compounds in twig litter. The decomposition of oak twigs based on rates of the mass loss during the first 5 years was simulated using the Olson exponential equation. The simulated data fitted well with the observed values. Oak twigs were predicted to reach 95% mass loss within 21 years. During the first 5 years, the concentration of protein in the remaining litter increased from 3.5% to 5.5%, while the concentration of hemicellulose decreased from 16.0% to 8.0%. However, there was no obvious change in the concentrations of lignin and cellulose. The losses of lignin, crude-cellulose and hemicellulose could be well simulated using the Olson exponential equation. However, this was not true for cellulose and protein.  相似文献   

9.
Mesophyll cells of Zinnia elegans var. Envy that had been induced to differentiate into tracheary elements (TEs) in suspension culture were treated with the cellulose synthesis inhibitor 2,6-dichlorobenzonitrile (DCB). The deposition of cellulose into the patterned secondary cell wall thickenings typical of TEs was inhibited as demonstrated by reduced incorporation of [14C]glucose into acetic/nitric insoluble material and absence of cellulose detectable by fluorescence after staining with Tinopal LPW, polarization optics, or labeling with a specific cellulase. Respiration as indicated by release of 14CO2 was inhibited to a much lesser extent, supporting a selective mechanism of action of DCB on the cellulose biosynthetic pathway. Patterned secondary cell wall thickenings were deposited in DCB-treated TEs, but these were smaller and less regularly shaped than those of control TEs. These cellulose-depleted thickenings lacked another abundant component of normal thickenings, the hemicellulose xylan, as indicated by absence of labeling with a specific xylanase or an antibody to xylan. DCB-treated TEs also showed dispersed lignin after staining with phloroglucinol, whereas control TEs contained lignin specifically localized to the secondary cell wall thickenings. Isoxaben, another recently described inhibitor of synthesis of acetic/nitric insoluble cell wall material (putatively cellulose), caused the same absence of detectable cellulose and xylan in the thickenings and dispersed lignin. These data suggest that: (i) the localization of lignin is ultimately dependent on the localization of cellulose; (ii) normal patterned wall assembly in TEs occurs in a self-perpetuating cascade in which some molecules of the secondary cell wall mediate patterning of others.  相似文献   

10.
The degradation of lignocellulosic biomass of banana pseudoste was investigated during solid state fermentation (SSF) by P. ostreatus and P. sajor-caju. Both organisms proved to be efficient degraders of banana pseudostem biomass. P.ostreatus degraded hemicellulose (40% of dry weight, d.w.) better than cellulose (17.5% of d.w.) and lignin (10% of d.w.). P. sajor-caju also degraded hemicellulose (31% of d.w.) better than cellulose (12.4% of d.w.) and lignin (6% of d.w.). In both cases, a preferential removal of hemicellulose during the initial growth period and a delayed degradation of lignin were observed. The kinetics of cellulolytic, hemicellulolytic and lignolytic enzyme production in liquid culture were also examined. The activities of CMCase and β-glucosidase were highest at 16 days of growth and avicelase activity was at its maximum after 24 days (CMCase - 1.1 IU/ml, β-glucosidase - 0.09 IU/ml in the case of P. ostreatus; CMCase - 1.0 IU/ml, β-glucosidase - 0.087 - IU/ml in the case of P. sajor-caju.). Xylanase and laccase activity reached their maximum after day 16 and day 24 of incubation, respectively. (Xylanase - 1.1 IU/ml and laccase 3.0 IU/ml in the case of P. ostreatus; xylanase - 1.0 IU/ml and laccase - 3.6 IU/ml in the case of P. sajor-caju.). The efficient degrading capacity of test fungi demonstrated their potential use in the conversion of banana pseudostem biomass into mycelial protein-rich fermented animal feed.  相似文献   

11.
研究了4种诱导物和5种金属离子对白腐菌降解竹子的影响。结果表明这4种诱导物对木质素的降解没有明显的促进作用,低浓度的吐温80抑制纤维素的降解,降解率仅为3.057%;5种离子对木质素降解均有促进作用,一定浓度的离子明显地抑制纤维素的降解,其中Ca^2+对纤维素降解的抑制作用最强,降解率仅为0.620%;诱导物和离子对半纤维素降解率影响较小;吐温80和Ca^2+能显著提高半纤维素和木质素的选择系数,其中添加Ca^2+时半纤维素和木质素选择性系数分别为66.565和49.331,初步显示:部分诱导物和金属离子可以有效影响白腐菌对竹子的选择性降解。  相似文献   

12.
Summary During growth in the presence of fibers composed of cellulose or hemicellulose, various strains of the thermophilic soil bacterium Clostridium thermocellum and several newly isolated thermophilic anaerobic soil bacteria adhered to the fibers. Attachment occurred via a fibrous ruthenium red-staining material. C. thermocellum sporulated while attached to the fibers when the pH dropped below 6.4. It is postulated that the attachment is involved in cellulose breakdown and that C. thermocellum gaines an advantage by remaining attached to its insoluble substrates when the environment is not suitable for rapid growth. The tendency to adhere to cellulose fibers was used in the purification of thermophilic cellulolytic anaerobes.  相似文献   

13.
木质纤维素生物质分布广、产量大、可再生,用于制备生物基能源、生物基材料和生物基化学品。木质纤维素生物质组成复杂,包含纤维素、半纤维素和木质素等,木质素与半纤维素通过共价键、氢键交联形成独特的“包裹结构”,纤维素含有复杂的分子内与分子间氢键,上述因素制约着其资源化利用。生物预处理以其独特优越性成为生物质研究的重要方面。系统阐述了生物预处理过程中木质素降解和基团修饰对纤维素酶解的影响,纤维素含量及结晶区变化,半纤维素五碳糖利用,微观物理结构的改变。进一步提出了以生物预处理为核心的组合预处理、基于不同功能的多酶协同催化体系、木质纤维素组分分级利用和新型高效细菌预处理工艺是生物预处理未来发展的重要趋势。  相似文献   

14.
Summary The influence of the growth of three higher fungi on the composition of wheat straw was investigated. Pleurotus pulmonarius, P. sajor-caju and Lentinus edodes grew very well on lignocellulosic substrates, breaking down a considerable amount of lignin. The initial lignin concentration of straw was halved after 12 weeks of fungal growth, doubling the enzymic digestibility. Together with lignin, the higher fungi consumed half of the amount of hemicellulose (i.e. 15%), leaving cellulose fairly intact, which should remain as an energy source for ruminants.  相似文献   

15.
iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The basidiomycete fungi such as Phanerochaete chrysosporium secrete large amount of hydrolytic and oxidative enzymes and degrade lignocellulosic biomass. The lignin depolymerizing proteins were extensively studied, but cellulose, hemicellulose and pectin hydrolyzing enzymes were poorly explored. In this study P. chrysosporium was grown in cellulose, lignin and mixture of cellulose and lignin, and secretory proteins were quantified by isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics using liquid chromatography tandem mass spectrometry (LC-MS/MS). An iTRAQ quantified 117 enzymes comprising cellulose hydrolyzing endoglucanases, exoglucanases, beta-glucosidases; hemicelluloses hydrolyzing xylanases, acetylxylan esterases, mannosidases, mannanases; pectin-degrading enzymes polygalacturonase, rhamnogalacturonase, arabinose and lignin degrading protein belonging to oxidoreductase family. Under cellulose and cellulose with lignin culture conditions, enzymes such as endoglucanases, exoglucanases, β-glucosidases and cellobiose dehydrogenase were significantly upregulated and iTRAQ data suggested hydrolytic and oxidative cellulose degradation. When lignin was used as a major carbon source, enzymes such as copper radical oxidase, isoamyl oxidase, glutathione S-transferase, thioredoxin peroxidase, quinone oxidoreductase, aryl alcohol oxidase, pyranose 2-oxidase, aldehyde dehydrogenase, and alcohol dehydrogenase were expressed and significantly regulated. This study explored cellulose, hemicellulose, pectin and lignin degrading enzymes of P. chrysosporium that are valuable for lignocellulosic bioenergy.  相似文献   

16.
The oblique muscle organizer (Comb- or C-cell) in the embryonic medicinal leech, Hirudo medicinalis, provides an amenable situation to examine growth cone navigation in vivo. Each of the segmentally iterated C-cells extends an array of growth cones through the body wall along oblique trajectories. C-cell growth cones undergo an early, relatively slow period of extension followed by later, protracted and rapid directed outgrowth. During such transitions in extension, guidance might be mediated by a number of factors, including intrinsic constraints on polarity, spatially and temporally regulated cell and matrix interactions, physical constraints imposed by the environment, or guidance along particular cells in advance of the growth cones. Growth cones and their environment were examined by transmission electron microscopy to define those factors that might play a significant role in migration and guidance in this system. The ultrastructural examination has made the possibility very unlikely that simple, physical constraints play a prominent role in guiding C-cell growth cones. No anatomically defined paths or obliquely aligned channels were found in advance of these growth cones, and there were no identifiable physical boundaries, which might constrain young growth cones to a particular location in the body wall before rapid extension. There were diverse associations with many matrices and basement membranes located above, below, and within the layer in which growth cones appear to extend at the light level. Additionally, a preliminary examination of myocyte assembly upon processes proximal to the growth cones further implicates a role for matrix-associated interactions in muscle histogenesis as well as process outgrowth during embryonic development.  相似文献   

17.
不同木质纤维素基质上白腐菌降解特性的研究   总被引:14,自引:0,他引:14  
通过测定木质素、纤维素、半纤维素和漆酶分泌的变化,研究白腐菌在稻草、木屑、粗纤维素、滤纸、黑液木素基质上的降解特性。结果表明,除黑液木素上白腐菌不能生长外,在前25d,各基质中纤维素、半纤维素和木质素含量呈持续下降趋势,之后,降解速率减少,其中木质素的降解速率大于纤维素和半纤维素的降解速率。漆酶分泌在生长初期呈快速上升趋势,第10d酶活达到最大,第10~20d快速下降,其后基本不变,基质中酶活大小顺序为稻草基质、木屑基质、粗纤维和滤纸基质,显示了木质素存在对漆酶分泌的诱导作用。  相似文献   

18.
The bioconversion of phenolic monomers of lignin (veratrol, vanillin, and vanillyl alcohol), hydrolyzed lignin, and sodium lignosulfonate (a product of the chemical modification of native lignin) by the basidiomycete Lentinus tigrinus was studied. It was found that the growth of the fungi on lignin monomer compounds is suppressed. A noticeable growth of the fungal biomass was observed only on the technical substrate sodium lignosulfonate. A comprehensive physicochemical study of the products of microbial transformation of sodium lignosulfonate was performed. It was established that the main direction of lignin bioconversion is oxidative condensation to form humic substances. In this case, depolymerization of the phenolic skeleton of lignin to monomeric phenol derivatives did not occur. The aromatic carbon atoms of the phenolic skeleton, unlike the carbon atoms of polysaccharides, were not involved in the fungal biomass growth. The observed growth of the fungus on the technical substrate sodium lignosulfonate can be explained by the presence of admixtures of oligomeric polysaccharides hemicellulose and cellulose, which can be used by the fungus as a carbon source.  相似文献   

19.
Sugarcane bagasse was fractionated to cellulose, hemicellulose and lignin by a proprietary steam explosion process, followed by downstream purifications, developed in our laboratory. The fractionated cellulose contained ~94% cellulose, about ~5% hemicellulose, traces of lignin (~0.2%), and ~1% ash. The cellulose was acetylated under heterogeneous conditions to obtain cellulose acetates. These were extensively characterized using FTIR, TGA, DSC, GPC, HPIC, WAXRD, and viscometry. The novel feature of this study was the utilization of the hemicellulose content (5%) of bagasse cellulose as an internal plasticizer. Through kinetic experimentation, we have demonstrated that the residual hemicellulose need not be considered as an impurity; rather it can be used in acetylated form as a plasticizer as well as a biodegradable additive for cellulose acetates made from slightly impure cellulose produced from non-wood origin. Our results therefore show how lignocellulosic agricultural wastes can be utilized to produce high value plastics.  相似文献   

20.
During the growth of Bacteroides cellulosolvens in media containing cellulose, the accumulation of unutilized sugars in the culture broth occurred mainly during the stationary phase of growth. Cells harvested during the stationary phase of growth continued to convert both cellulose and hemicellulose to cellobiose, glucose, and xylose. These three sugars caused feedback inhibition. Continuous removal of these sugars during the incubation of cells with cellulose at pH 5 accumulated ca. 32 g/L of sugars as compared to ca. 17 g/ produced under batch conditions of growth. Sugar formation by resting cells also increased with increasing cell concentration and did not require any nutrient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号