首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A statistical analysis of size for the megasporocyte, functional megaspore, and 2-, 4-, 8-nucleate, and mature female gametophytes for Glycine max and Phaseolus aureus grown in the field and greenhouse was accomplished from measurements of the length, width, and length and width intercepts for each stage. The greatest increase in mean length for Phaseolus in the greenhouse and Glycine in the field takes place between the 2- and 4-nucleate stages. In alternate environments, the two genera show the greatest increase between the functional megaspore and 2-nucleate stage. Greater similarity between the genera than shown by each genus in the two environments was also found for other features, viz., the largest mean length and width attained by each stage, the least increase in mean length and width and the overlap in confidence intervals for length and length intercepts between successive stages, and changes in the width intercept as a percent of total width as the ovule becomes campylotropous. T tests at the 0.05 level reveal significant differences between greenhouse and field plants in Phaseolus for length of the megasporocyte and 8-nucleate stage and length and length intercept of the 2- and 4-nucleate stages. In Glycine, differences appear for the length and both intercepts of the megasporocyte and the length intercepts of the mature stage. The similarity of Glycine in one environment to Phaseolus in the other coupled with the differences of statistical significance for each genus in the two conditions suggest that environment does have a pronounced effect on female gametophyte development. Statements to the contrary in previous reports to include one on these genera are correct for the qualitative aspects of development investigated, but they cannot be extended in all respects to the quantitative analysis of growth reported here. The differences recorded suggest caution in the choice of material for comparative studies. For embryological data, especially those of a quantitative nature, to be fully useful in taxonomic assessments, material for all taxa should be collected from natural habitats.  相似文献   

2.
Abstract The growth of young plants of the epigeal species Phaseolus vulgaris and Glycine max is compared with that of the hypogeal species Pisum sativum and Vicia faba, with particular reference to synchronization between the exhuastion of seed reserves of N and the availability of fixed N. It is argued that the N stress symptoms which occur when these two processes are not synchronized are more common and obvious in Phaseolus or Glycine than in Pisum or Vicia. This is primarily because in these species (a) the first fixed N is used for nodule growth rather than being exported to the shoot system and (b) the first foliage leaves have a much greater area and contain a larger proportion of N reserves from the seed. It is further suggested that Phaseolus and Glycine may show the greater response to nitrogen fertilizer applied at sowing since (a) most of the applied nitrate is passed directly to the shoots (rather than being reduced in the roots as in Pisum or Vicia) and (b) in addition to being used for growth (following reduction), it may also be used prior to reduction as part of the osmotic force driving cell expansion.  相似文献   

3.
Megagametogenesis of soybean, Glycine max (L.) Merr., cultivars Clark and Clark k2, and F1 hybrid of Clark (female parent) crossed with Clark k2 (male parent) were studied using stereo light microscopy and confocal scanning laser microscopy. Reproductive development in Clark and Clark k2 plants was compared to F1 hybrid plants. In mature pods, 6.4% of the ovules of Clark, 8.1% of the ovules of Clark k2, and 41.4% of the ovules of F1 hybrid plants were aborted. This female partial sterility was due to incomplete megagametophyte development: undeveloped polar nuclei—or developed but not in a position for fertilization; increased megagametophyte wall thickness; abnormal shape and/or premature degeneration of synergids and intact synergids throughout the life of the ovule; egg cell not well-developed or absent; and megagametophyte remaining uninucleate. Each of these abnormalities contributed to either lack of double fertilization or early megagametophyte abortion. Electronic Publication  相似文献   

4.
M. M. Smith  M. E. McCully 《Planta》1977,136(1):65-70
Seedlings of Zea mays L., Sorghum vulgare, Pisum sativum L., Phaseolus aureus, Glycine max L. and Lycopersicum esculentum were grown at 20°C and at 26°C. The seedlings were fixed in glutaraldehyde and sections were examined for aniline-blue-induced fluorescence, which is supposedly indicative of -1,3-glucans or callose. There was much more aniline-blue fluorescence in Zea, Glycine and Phaseolus seedlings grown at 20°C compared with 26°C whereas Pisum and Lycopersicum seedlings grown at 26°C showed more fluorescence than those grown at 20°C. In Zea, large deposits of fluorescent material were particularly noticeable in the walls of elongating cells around the shoot apex and in root-cap cells, and appeared to be closely associated with a few of the pitfields. The remaining pitfields showed the normal, low level of aniline-blue fluorescence.  相似文献   

5.
Wiggins , Ira L. (Stanford U., Stanford, Calif.) Development of the ovule and megagametophyte in Saxifraga hieracifolia. Amer. Jour. Bot. 46(10): 692–697. Illus. 1059.—Buds of Saxifraga hieracifolia collected in the vicinity of Point Barrow, Alaska, fixed, sectioned, and stained by standard methods, revealed that the archesporial cell in the ovule of this species is hypodermal and gives rise to the megaspore mother cell and a small number of parietal cells. Occasionally 2 megaspore mother cells occur within an ovule. Meiosis in the megaspore mother cell produces a linear tetrad of megaspores, the chalazal one of which normally gives rise to a monosporic, Polygonum-type megagametophyte. The polar nuclei fuse near the chalazal end of the megagametophyte and the antipodal cells disintegrate prior to fertilization. A distinct filiform apparatus and a marked lateral “spur” develop on each synergid. Vacuolation in the egg cell and in the synergids follows the usual pattern. Only a single integument surrounds the nucellus.  相似文献   

6.
7.
The development of the ovule, megaspore and megagametophyte in Saxifraga fortunei var. partita (Makino) Nakai was observed. The ovule is anatropous, bitegmic, and crassinucellate. Both integuments originate from the epidermis. The archesporium is considered to be multicellular. The primary sporogenous cell functions as the megaspore mother cell which forms a T-shaped tetrad. The chalazal member of the megaspore tetrad is functional and develops into a Polygonum-type embryo sac. In the pyriform synergids the filiform apparatus is observed, but any hook or indentations could not be recognized. The antipodal cells are detectable until the Helobial endosperm undergoes several nuclear divisions. Secondary multiplication of the nuclei or the cells of the antipodals could not be observed.  相似文献   

8.
Summary The genes encoding the 18S25S ribosomal RNA gene repeat in soybean (Glycine max) and its relatives in the genus Glycine are surveyed for variation in repeat length and restriction enzyme site locations. Within the wild species of subgenus Glycine, considerable differences in repeat size occur, with a maximum observed in G. falcata. Repeat length and site polymorphisms occur in several species, but within individual plants only single repeat types are observed. The rDNA of the cultivated soybean and its wild progenitor, G. soja are identical at the level of this study, and no variation is found in over 40 accessions of the two species. Data from rDNA mapping studies are congruent with those of previous biosystematic studies, and in some instances give evidence of divergences not seen with other approaches.  相似文献   

9.
Plant diseases caused by Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) are distributed in North and South America as well as in South and East Europe and occur mostly on beans (Phaseolus vulgaris). This is the first report of Cff on soybean in Germany. Cff was detected in complex with Pseudomonas syringae pv. glycinea on field‐grown soybeans that were not treated with pesticides. Cff, the causal agent of bacterial tan spot disease, was identified by 16S rDNA sequencing and by artificial infection and re‐isolation from the host plants soybean (Glycine max) and bush bean (Phaseolus vulgaris).  相似文献   

10.
Lee JS  Verma DP 《The EMBO journal》1984,3(12):2745-2752
We have determined the structure of one of the leghemoglobin (Lb) genes of Phaseolus vulgaris (kidney bean) and deduced the chromosomal arrangement of leghemoglobin genes by genomic hybridizations with Lb and two other sequences, each specific to the 5' or 3' region of the soybean leghemoglobin loci. By comparing this organization with two other species of legumes, Glycine max (soybean) and G. soja (wild soybean), a phylogeny of leghemoglobin gene loci was traced. The intragenic structure of the kidney bean leghemoglobin gene shows the same intron/exon arrangement as that of soybean leghemoglobin genes and extensive sequence homologies in both coding as well as 5' and 3' non-coding regions. The presence in the kidney bean genome of four leghemoglobin genes suggests that tandem duplications of a single primordial plant globin gene had occurred to generate four leghemoglobin genes in an `Lb-locus' before Glycine and Phaseolus species diverged. Chromosome duplication by tetraploidization in Glycine generated two loci containing four genes each. A large deletion in one of the two four-gene loci in soybean resulted in the generation of the Lbc2 locus containing two leghemoglobin genes, one functional and another pseudo (LbΨ2). This pseudogene, unlike that present on the main locus, is represented by only two and a half exons and appears to be truncated. The two other truncated genes (LbT1 and LbT2) were probably generated similarly in the genome of Glycine spp. following tetraploidization before the divergence of G. max and G. soja.  相似文献   

11.
Maheshwari, Satish C., and R. N. Kapil. (U. Delhi, Delhi, India.) Morphological and embryological studies on the Lemnaceae. I. The floral structure and gametophytes of Lemna paucicostata. Amer. Jour. Bot. 50(7): 677–686. Illus. 1963.—In Lemna paucicostata, a locally occurring member of the Lemnaceae, the plant body is represented by a frond which is devoid of lignified elements. The root shows a winged root sheath but does not have root hairs. There are no distinctive layers like the endodermis and xylem. The male archesporium is hypodermal and differentiates normally as in other angiosperms into parietal and sporogenous layers. The tapetum is single-layered and plasmodial. The partition walls of the anther are not derived by sterilization of the sporogenous cells as believed earlier. The microspore tetrads are isobilateral and decussate, the meiotic divisions being successive. The pollen grains are shed at the 3-celled stage. The ovary contains a single hemianatropous, bitegminal and crassinucellar ovule. The development of the embryo sac conforms to the Allium type.  相似文献   

12.
A comparative study of microsporogenesis in fertile and in male sterile (ms1) soybean plants (Glycine max (L.) Merr.) was conducted by using various microscopic techniques. Once the developmental pattern for fertile microsporogenesis was established, it was compared with the developmental pattern in sterile plants to determine the time of microsporogenesis breakdown. Sterility of the ms1 mutant is caused by failure of cytokinesis after telophase II. The four nuclei resulting from meiosis become enclosed in a single-celled structure, termed a coenocytic microspore. These microspores develop a pollen-like wall and become engorged with lipid and starch reserves. Coenocytic microspores usually degenerate after engorgement. This study of fertile and sterile (ms1) microsporogenesis has shown that nuclear and cytoplasmic events must occur at precise times for the successful development of 1n pollen grains from 2n sporogenous cells. Any disruption during this process leads to sterility.  相似文献   

13.
Megasporogenesis and megagametogenesis were examined in Glycine max with light, fluorescence, and electron microscopy. Megasporogenesis results in a linear tetrad of four megaspores. Megagametophyte development is of the Polygonum type, with the functional chalazal megaspore undergoing three successive mitotic divisions to produce an eight-nucleate, seven-celled mature megagametophyte. The central cell becomes packed with starch. At fertilization, the antipodals are degenerate, the polar nuclei have fused, starch is diminished, and the egg occupies most of the micropylar portion of the megagametophyte. Several pollen tubes were occasionally observed at each micropyle, yet only one was involved in fertilization. Pollen tube entry occurs through a slightly reduced, viable synergid cell. Endosperm development precedes embryo growth. These results describing normal development allow important comparison with genetic mutants of soybean that affect female fertility.  相似文献   

14.
 Wild soybean (Glycine soja Sieb. et Zucc.), regarded as the progenitor of cultivated soybean [G. max (L.) Merr.], is widely distributed in East Asia. We have collected 1097 G. soja plants from all over Japan and analyzed restriction fragment length polymorphisms (RFLPs) of mitochondrial DNA (mtDNA) in them. Based on the RFLPs detected by gel-blot analysis, using coxII and atp6 as probes, the collected plants were divided into 18 groups. Five mtDNA types accounted for 94% of the plants examined. The geographic distribution of mtDNA types revealed that, in many regions, wild soybeans grown in Japan consisted of a mixture of plants with different types of mtDNA, occasionally even within sites. Some of the mtDNA types showed marked geographic clines among the regions. Additionally, some wild soybeans possessed mtDNA types that were identical to those widely detected in cultivated soybeans. Our results suggest that the analysis of mtDNA could resolve the maternal lineage among plants of the genus Glycine subgenus Soja. Received: 16 June 1997/Accepted: 5 August 1997  相似文献   

15.
Summary The exploitation of wild perennial species of subgenus Glycine has been formidable in soybean breeding programs because of extremely poor crossability and an early pod abortion. The combination of gibberellic acid application to hybridized gynoecia and improved seed culture media formulations resulted in a new intersubgeneric hybrid between Glycine max (L.) Merr. (2n=40) and G. clandestina Wendt. (2n=40). Of the 31 immature seeds cultured, 1 regenerated 21 plants through organogenesis while the remaining 30 failed to germinate. All the regenerated plants were similar morphologically, carried expected 2n=40, possessed hybrid isozyme patterns and were completely sterile. Complete absence of chromosome pairing was observed in 40.9% sporocytes. The occurrence of 1 to 6 loosely paired rod bivalents suggests some possibilities of allosyndetic pairing. Hybrid plants set aborted pods after backcrossing to G. max.  相似文献   

16.
Soybean [Glycine max (L.) Merr.] evolution was examined by sequencing portions of the restriction fragment length polymorphism (RFLP) locus A-199a of 21 taxa from the Glycininae and 1 from the Phaseoleae. Four hundred nucleotides were determined in each, aligned, and then compared for these taxa. Within the annual soybean subgenus (Soja), the four accessions differed at as many as 2.2% of the nucleotides. Among 13 perennial soybean species (subgenus Glycine), nucleotide variation ranged from 1.7% to 8.4%. The nucleotide difference between the two soybean subgenera was 3.0–7.0%. Nucleotide variation between the genus Glycine and the related genera of Neonotonia, Amphicarpa, Teramnus, and Phaseolus ranged from 8.2% to 16.4%. In addition to nucleotide substitutions, insertions/deletions (indels) differences were also observed and were consistent with nucleotide-based analysis. Cladistic analysis of the A-199a sequences was performed using Wagner parsimony to construct a soybean phylogeny. Sixteen equally parsimonious trees were produced from these data. The trees were 246 steps in length with a consistency index of 0.78. Indels distribution upon the consensus topology revealed a pattern congruent with the nucleotide-based phylogeny. The current taxonomic status of the soybean subgenera and the related genera of Neonotonia, Amphicarpa, and Teramnus were well-supported and appear monophyletic in this analysis. Homoplasy within the subgenus Glycine led to a lack of resolved topology for many of these 13 taxa. However, the Glycine clade topology was consistent with phylogenies proposed using crossing experiments and cpDNA RFLPs. These genera were arranged from ancestral to derived as: Teramnus, Amphicarpa, Neonotonia, and Glycine when Phaseolus vulgaris was used as an outgroup.  相似文献   

17.
To aid in understanding of the early events in seed development, surface topography observations with the scanning electron microscope can be coupled with new methods of clearing tissues for light microscopy study. These techniques reveal that two to four ovules begin development along the placental ridge as conduplication of the carpel proceeds in Trifolium repens L. A multicellular archesporium may develop giving rise to several sporogenous cells and ultimately to more than one megasporocyte. However, meiosis is completed in only one megasporocyte to give rise to a single linear tetrad of megaspores. The chalazal megaspore functions in megagametogenesis. Megasporogenesis and megagametogenesis progress as ovule ontogeny proceeds. The outer integument develops more rapidly than the inner and contributes to the final form of the campylotropous ovule. The most dramatic change in ovule form occurs as the tetrad develops and the functional spore enlarges and divides mitotically to produce the two-nucleate megagametophyte. It can be demonstrated that this early gametophyte develops faster than it is allowed to expand in the nucellar mass. This may in part explain why there is gametophyte failure and reduced seed set in clovers.  相似文献   

18.
Zinc deficiency decreased pollen viability in maize (Zea mays L. cv. G2) grown in sand culture. On restoring normal zinc supply to zinc-deficient plants before the pollen mother cell stage of anther development, the vegetative yield of plants and pollen fertility could be recovered to a large extent, but the recovery treatment was not effective when given after the release of microspores from the tetrads. If zinc deficiency was induced prior to microsporogenesis it did not significantly affect vegetative yield and ovule fertility, but decreased the fertility of pollen grains, even of those which visibly appeared normal. If the deficiency was induced after the release of microspores from the tetrads, not only vegetative yield and ovule fertility but pollen fertility also remained unaffected.  相似文献   

19.
CHRISTOU  PAUL 《Annals of botany》1990,66(4):379-386
Transgenic soybean (Glycine max L.) plants derived from electricdischarge particle acceleration experiments exhibited varyingdegrees of chimerism which was followed by the expression ofthe introduced ß-glucuronidase (gus) gene. Degreesof chimerism in transgenic plants were established by determiningexpression of the gus gene observed as blue spots, streaks orsectors in stem and leaf tissues in in vitro grown plantletsand greenhouse plants. Clonal plants were also obtained. Presenceof the gene was confirmed by Southern blot analysis. These studiespermitted the reconstruction of a partial picture for the developmentof the soybean plant. Glycine max L. cv. Williams 82, soybean, transformation, ß-glucuronidase, chimeric plant phenotypes, development  相似文献   

20.
Summary Soybean [Glycine max (L.) Merr.] chromosomes were analyzed using the chromosome image analyzing system, CHIAS, and seven groups, including subgroups, were identified based on morphological characteristics. Two pairs of chromosomes were conspicuous in their morphological traits. One pair of chromosomes, which had the largest arm ratio among all the chromosomes, was commonly observed in the species in all three subgenera of the genus Glycine. These chromosomes also displayed a unique pattern after N-banding and were detected as marker chromosomes. G. soja, which is considered to be the ancestor of G. max, has two types of marker chromosomes. The lines that carry the same type as G. max may be the ancestors of G. max among the lines of G. soja. The morphological differences of the marker chromosomes within the species in the subgenus Soja are discussed in relation to the domestication process of soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号