首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was made of the ontogeny of the achene of Polygonum pensylvanicum L. from fertilization to maturity. The proembryo is classified as the Polygonum Variation, Asterad Type. Cotyledons are initiated three days after anthesis, and by the fifth day procambium is present in the embryo axis. At approximately seven days after anthesis, the embryo begins to curve and occupy a marginal position in the ovary. By ten days the first foliage leaf primordium is initiated at the stem apex of the embryo. At maturity the embryo consists of two cotyledons, a plumule composed of the stem apex and one leaf primordium, and a hypocotyl with a well-developed radicle. Endosperm nuclei begin to divide before the first division of the zygote. Cell wall formation begins in the endosperm at the micropylar end of the embryo sac and proceeds toward the chalazal region. By the fifth day the endosperm is completely cellular, except for a basal projection; and a peripheral meristem has been established. At approximately ten days the peripheral meristem ceases periclinal cell division and becomes the aleurone. At the time of fertilization the ovary wall has its full complement of cell layers. The walls of the outermost cells elongate and become convoluted. Subsequent thickening and lignification of these cell walls produce the hard epicarp of the mature achene.  相似文献   

2.
Mc Gahan , Merritt W. (United Fruit Co., Norwood, Mass.) Studies on the seed of banana. I. Anatomy of the seed and embryo of Musa balbisiana. Amer. Jour. Bot. 48(3): 230–238. Illus. 1961.—The seed coat of Musa balbisiana Colla consists of a relatively thick outer integument and a 2–cell-layered inner integument. The entire seed coat is sclerified, but routine tests for lignin are negative. Within the outer integument there is a zone of unusual sclereids tentatively termed “multiluminate.” Between the inner integument and the remnants of the nucellus is a cuticle 10–12 μ thick. The micropylar plug and collar are typical of the genus. The chalazal mass is an annular region of gelatinous cells. The mature embryo is comprised of a massive cotyledon, an epicotyl with 1 leaf primordium, a primary root primordium, and several adventitious root primordia. Procambium is well developed, but no mature vascular elements are present in the embryo.  相似文献   

3.
宁夏枸杞的胚胎发生属茄型,由顶细胞参与胚体的形成,基细胞仅形成六细胞胚柄。胚乳发育为细胞型,但也观察到少数核型胚乳的现象。初步探讨了核型胚乳与细胞型胚乳的关系。  相似文献   

4.
Winter , Dorothy M. (Iowa State U., Ames.) The development of the seed of Abutilon theophrasti. II. Seat coat. Amer. Jour. Bot. 47(3) : 157—162. Illus. 1960.–The integuments of Abutilon theophrasti Medic. undergo a rapid increase in size, predominantly by anticlinal cell divisions during the first 3 days after fertilization. Within 7 days, the outer epidermis of the inner integument becomes thick walled. At maturity this compact, lignified, and cutinized palisade layer accounts for more than half the thickness of the seed coat. During early growth, the palisade cells form a continuous layer in the micropylar region. In the chalazal region the palisade layer is discontinuous in a slit-shaped region, 60 × 740 microns. The shape of this discontinuity constitutes a major difference between dormant-seeded Abutilon and non-dormant Gossypium seeds. Exterior to the palisade layer is the outer integument which consists of a small-celled layer and a large-celled layer sparsely covered with unicellular, lignified hairs. Interior to the palisade is the thick mesophyll of the inner integument which is largely digested during seed growth and leaves only 2 pigmented cell layers in most regions at maturity. The inner epidermis is small-celled, pigmented and cutinized and adheres tightly to the endosperm. Seed coat impermeability increases with seed maturity. Even immature seeds will germinate, if scarified, indicating a lack of embryo dormancy.  相似文献   

5.
Dnyansagab , Vishnu R., and Delmer C. Cooper . (U. Wisconsin, Madison.) Development of the seed of Solanum phureja. Amer. Jour. Bot. 47(3) : 176—186. Illus. 1960.—Ontogeny of the seed of Solanum phureja Juz. et Buk. is described. The megagametophyte, during the course of its development, ruptures the nucellus and at maturity lies in direct contact with the inner layer (endothelium) of the single massive integument. The mature megagametophyte, a 7-celled structure, consists of a 3-celled egg apparatus, an endosperm mother cell with fused polar nuclei and 3 persistent antipodals. Both 2- and 3-celled mature pollen grains are formed within anthers of the same flower; hence this character cannot be considered of any taxonomic value. Double fertilization occurs between 24 and 72 hr. after pollination. A cellular endosperm is formed, the peripheral layer acting as an absorbing tissue during the early ontogeny of the seed. Later this layer becomes organized as an aleurone layer and thereafter the source of nutrients is via the basal portion of the endosperm immediately adjacent to the apical end of the vascular tissue of the developing seed. Embryo development follows the Nicotiana variation of the Solanad type. The mature testa is composed of an outer layer of thick-walled epidermal cells, an inner layer of thin-walled cells and an intervening mass of disorganized tissue. In those instances where the ovule or young seed aborts, the endothelial cells of the integument become hyperactive and proliferate to such an extent that the space formerly occupied by the gametophyte or the developing endosperm and embryo becomes completely filled with endothelial tissue.  相似文献   

6.
Pistacia atlantica, P. palaestina, P. lentiscus and P. saportae , were found to have great similarity in their embryology and fruit development. The anatropous, pendulous and crassinucellate ovule was initially unitegmic; later, the integument split close to the micropyle, forming a partial second integument. After anthesis there was a development of a hypostase and an obturator. The development of the Polygonum-type embryo sac followed division of a megaspore mother cell, giving a tetrad or triad of megaspores. The functional megaspore was the chalazal one. The ovary developed into a mature pericarp after anthesis, even when pollination was prevented, and before the zygote divided. Therefore, the fruit can be parthenocarpic. The ovule started to grow after initiation of embryo development until it filled the cavity within the pericarp. The zygotes were dormant for 4–18 weeks after pollination. In P. saportae reproduction became arrested during the development of the embryo sac; only very few abnormal embryos were found. No fixed pattern of embryo development could be discerned. The endosperm was initially nuclear, becoming cellular when the embryo started to develop. The seed coat was derived from the integument and the remnants of the nucellus.  相似文献   

7.
The endosperm is nuclear, cell wall initiation starts 5 days after pollination. During early stages endosperm nuclei exhibit synchrony in their division. Embryogeny is of the Asterad type. A7-to 10-celled suspensor persists up to the dicot stage of the embryo. Both integuments contribute towards formation of the seed coat. 30 days after pollination seeds become mature. Their endosperm is scanty and persists as a thin layer between the folds of the cotyledons. Nucellus remnants are present towards the funicular side.  相似文献   

8.
无距虾脊兰胚珠发育及种子形成研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用石蜡切片、半薄切片、扫描电镜技术对无距虾脊兰不同时期的子房(蒴果)进行研究.结果表明:(1)无距虾脊兰授粉后19d,胎座上分化出上万个胚珠原基,这些胚珠原基由1列细胞外包1层表皮细胞构成,其中胚珠原基内部顶端的细胞分化为孢原细胞,授粉后45 d,孢原细胞发育分化为大孢子母细胞.(2)无距虾脊兰成熟胚珠为倒生胚珠,双珠被,薄珠心,胚囊发育为蓼型,且胚珠的发育即便在同一个果实内也是不同步的.(3)受精后合子经过一次不均衡横裂形成基细胞和顶细胞;基细胞不参与胚体构成,分化为单细胞的胚柄,最后退化消失;顶细胞经多次分裂形成原球胚,胚胎发育类型为石竹型.(4)成熟种子呈纺锤形,由球形胚和内外双层种皮构成,双层种皮分别由内外珠被发育而来.  相似文献   

9.
通过qRT-PCR对毛竹相关成花基因PheTFL1的表达进行研究,为毛竹开花机理的研究提供理论依据.从毛竹UBC18、PP2A和EF1α等9个候选内参基因中筛选出在叶、幼嫩花序、花序轴、枝、竹青等11个组织器官中都稳定表达的PP2A用于毛竹PheTFL1基因qRT-PCR结果的校正.结果显示:PheTFL1基因在开花竹叶、枝和竹青中低丰度表达,与未开花竹差异不显著,但在花和花序轴中高丰度表达;在实生苗叶和根中高丰度表达,在实生苗茎中低丰度表达.PheTFL1基因在具有分生能力的幼嫩组织中高丰度表达,说明其不仅参与花发育的调控,还参与了分生组织生长的调控.  相似文献   

10.
五唇兰雌配子体发育和胚胎发生的研究   总被引:11,自引:2,他引:11  
五唇兰的胚珠倒生型,具薄珠心,两层珠被。胚囊发育为双孢子葱型,成熟胚囊8核。从传粉到受精约50d,正常双受精。胚具5-6细胞的胚柄,种子成熟时胚柄及胚乳核消失,成熟种子只具单层细胞的种皮和一个未分化的珠珠形胚。  相似文献   

11.
12.
P. godefroyae is one of the diandrous species of rather primitive orchids. The cytokinesis of PMCs conforms to simultaneous type. The arrangement of microspores in a tetrad is tetrahedral or isobilateral. The first mitosis in a pollen grain is unequal and results in the formation of two unequal cells. The small one is the generative cell and the large one, the vegetative cell. The wall material between them is callose which is easily detectable under the fluorescence microscope. When the generative cell detaches from the microspore wall and migrates into the cytoplasm of the vegetative cell, the callose wall disappears and a thin PAS-positive wall Was observed around the generative cell. The PAS-positive wall remains untill anthesis. The tapetum is of secretory type and its cells are binucleate. With the degradation of the tapetal cells, they discharge a lot of yellow, amorphous, sticky mass into the pollen sac. The pollens distribute in it to form a sticky pollen mass. The ovule has single integument and one layered nucellus around the magaspore mother cell. The mature embryo sac consists of eight or six cells and conforms to the Allium type. The interval between pollination and fertilization is about 45 days and the normal double fertilization has been observed. The primary endosperm cell undergoes one division only and results in the formation of 2 nucleate endosperm. The dormancy period of zygote lasts 45–50 days. During the development of the embryo, a suspensor consisting of a row of two to four cells is formed. It takes more than six months from the pollination to the maturation of the seed. The embryo in the mature seed is just an ellipsoidal mass of 120–140 cells without differentiation. The endosperm and suspensor are all degenerated in the mature seed.  相似文献   

13.
大麦胚和胚乳发育的相关性及贮藏营养物质的积累   总被引:4,自引:0,他引:4  
大麦(Hordeum vulgare L.)开花后1d,见合子及退化助细胞,游离核胚乳尚未形成;开花后2~3d,胚为5及10个细胞,胚乳为游离核期;开花后4及5、6d,胚为梨形及长梨形,胚乳达细胞化期;开花后8d,胚为胚芽鞘期,糊粉层原始细胞产生;开花后10d,胚具1叶,糊粉层1~2层;开花后13d胚为2叶胚,亚糊粉层发生;开花后17d,3叶胚形成,糊粉层多为3层并停止分裂,菱柱形及不规则胚乳细胞分化;开花后21~29d,胚为4叶胚,胚乳进一步分化;开花后33d,胚为5叶成熟胚,胚乳亦成熟。淀粉、蛋白质在胚中积累始于开花后13d。在盾片中由基向顶发生,在胚芽鞘及叶原基中,首先在顶端出现。成熟盾片顶端的淀粉消失。开花后6d,胚乳开始积累淀粉;开花后10d,糊粉层及胚乳细胞积累蛋白质。开花17d后胚乳的蛋白质体多聚集,29d后蛋白质体显著减少。开花后17d,在盾片及糊粉层细胞中检测到油脂。果长或果长与稃片长之比和盾片长可作为不同发育期胚和胚乳的形态指标。  相似文献   

14.
Sripleng , Aksorn , (Kasetsart U., Bangkok, Thailand), and Frank H. Smith . Anatomy of the seed of Convolvulus arvensis. Amer. Jour. Bot. 47(5) : 386—392. Illus. 1960.–The anatropous ovule has a small, ephemeral nucellus covered by a massive integument. Shortly after fertilization, a lateral pouch develops from the upper portion of the embryo sac toward the dorsal side of the ovule and then downward. This leaves a partial integumentary septum in the base of the seed. The cellular endosperm is mostly absorbed by the embryo. Two—6 cell layers persist on all sides of the seed except below the cotyledons on the dorsal side where larger amounts persist. Over most of the seed the dermatogen develops into an epidermis that consists in part of groups of thick-walled elongate cells that produce the papillose appearance of the mature seed. The cells beneath the dermatogen divide periclinally and form 2 layers. The outer layer undergoes anticlinal divisions and differentiates a subepidermal layer of small, rectangular, thick-walled cells that become lightly lignified and suberized. The cells of the inner layer undergo some anticinal and periclinal divisions, elongate and differentiate as palisade sclerenchyma. The inner layers of the integument consist of parenchyma cells that are crushed and partially absorbed at maturity. The pad on the basal end of the seed, between the hilum and micropyle, is derived from a multiple epidermis that is differentiated into several layers of rectangular cells and a layer of palisade sclerenchyma. The subepidermal and palisade layers found over other parts of the seed dip beneath the pad.  相似文献   

15.
Summary The reproductive development of Rhododendron macgregoriae F.v.M., Section Vireya (Ericaceae) has been followed from 10 days before anthesis to the production of mature germinable seeds about 145 days after anthesis. The species is self-compatible but shows both protandry and physical separation of pollen from the receptive stigma. Pollen is mature and viable from shortly before anthesis until the corolla and attached anthers abscise some 9–12 days after the flowers open. Spontaneous dehiscence, however, occurs mostly in the first few days after opening. The stigma becomes receptive 6–7 days after anthesis, and nectar is produced at this time. Female gametophytes are not mature until about 10 days after anthesis. Fertilization occurs about 6–7 days after pollination, and although the endosperm commences development immediately, development of the embryo proper does not begin until some 40–45 days later. Pollinations made with fresh pollen between 5 and 14 days after anthesis were successful, but those made on dry stigmas in the first 4 days after anthesis, or on senescing pistils 21 days after anthesis, gave little or no seed set. In nature, autogamy is probably uncommon, the majority of pollinations are likely to be geitonogamous, but there is considerable potential for outcrossing.  相似文献   

16.
Mohan Ram , H. Y. (U. Delhi, India.) The development of the seed in Andrographis serpyllifolia. Amer. Jour. Bot. 47(3) : 215—219. Illus. 1960.–Andrographis serpyllifolia, a member of the Acanthaceae, has an embryo sac with a bifurcated chalazal part. At the time of fertilization both synergids and antipodal cells disintegrate. Early in its development the endosperm is composed of 3 distinct parts: (1) a binucleate densely cytoplasmic chalazal haustorium; (2) a large binucleate micropylar haustorium; and (3) a central chamber which develops into the endosperm proper. The divisions in the central endosperm chamber are ab initio cellular. A few of the endosperm cells elongate enormously, ramify into the integument and destroy the surrounding cells. These cells have been termed secondary haustoria. Due to the unequal destruction of the integument, the endosperm assumes a ruminate condition. The mature seed is nearly naked because the seed coat is almost completely digested. The embryo has a long suspensor. The micropylar cells of the suspensor are hypertrophied and multinucleate. Contrary to Mauritzon's (1934) belief, the course of endosperm development is markedly different from that observed in Thunbergia. So far, albuminous seeds have been reported only in the subfamily Nelsonioideae. The present investigation provides a case of its occurrence in the Acanthoideae also.  相似文献   

17.
The structure of embryo sac, fertilization and development of embryo and endosperm in Vigina sesquipedalis (L.) Fruwirth were investigated. Pollization occures 7–10h before anthesis, and fertilization is completed 10 h after anthesis. After fertilization, wall ingrowths are formed at the micropylar and chalazal ends of the embryo sac. Embryo development conforms to the Onagrad type, and passes through 2 or more celled proembryo, long stick-shaped, globular, heart shaped, torpedo, young embryo, growing and enlarging embryo and mature embryo. Wall ingrowths are formed on the walls of basal cells and outer walls of the cells at basal region of suspenser. The suspensor remains as the seed reaches maturity. The starch grains accumulate in the cells of cotyledons by 9–16 days after anthesis, and proteins accumulate by 12–18 days after. The endosperm development follows the nuclear type. The endosperm ceils form at the micropylar end, and remain free nuclear phase at chalazal end. The outer cells are transfer cells. Those cells at the micropylar end form folded cells with wall ingrowths. At heartembryo stage, the endosperm begins to degenerate and disintegrates before the embryo matures.  相似文献   

18.
Summary A pea vicilin promoter-diphtheria toxin A (DTx-A) chain gene fusion was introduced into Arabidopsis and tobacco. The chimeric Dtx-A gene behaves as a dominant, seed-lethal, Mendelian factor, and the segregation ratios are consistent with the numbers of integrated copies as revealed by Southern blotting. Germination deficiency results from distinct developmental abnormalities, thus allowing genetic dissection of seed development. The endosperm is affected first in both species. In Arabidopsis, full cellularization of the initially syncytial endosperm does not take place, which results in shrinkage and a shriveled appearance of the mature dry seed. The embryo, which appears structurally normal and lacks visible lesions, ceases to develop at the partially recurved cotyledon stage and does not use the remaining endosperm. In tobacco, peripheral degeneration and premature termination of cellular endosperm development occurs at the cotyledon initiation stage. Lesions appear in the cotyledons at the advanced cotyledon stage, but the embryo continues to grow and attains nearly the same size and level of differentiation as mature wild-type embryos before degeneration and intracellular disintegration take place throughout. Accumulation of protein bodies and other cytoplasmic inclusions is very limited and occurs only in few cells. The timing and distribution of lesions follow a pattern typical for accumulation of protein bodies in wild-type seeds. These observations are consistent with expression of the vicilin promoter in the enlargement phase of cell differentiation. A novel tissue interaction arises, when the embryo uses up all the arrested endosperm: the embryo proves to be capable of absorbing the parenchyma layers of the integument, which are normally obliterated by, and incorporated into, the endosperm. The mature seed thus consists of a seed coat of one rigid cell layer, and a degenerated embryo. The genetic ablation technique has thus contributed to the establishment of the sequence of events and elucidation of the role of different cell lineages and tissues in seed development.  相似文献   

19.
The double fertilization and embryo development of P. lasiocarpa were studied using cytochemical method for DNA, RNA, polysaccharides and proteins. Stigmas were covered by secretion stained positively with PAS and mercuric bromphenol blue at receptive stage. The pollen grains germinated on the stigma in large quantities 6 hours after pollination. Fertilization started at the 6th days after pollination. The sperm nucleus fused with the secondary nucleus faster than the sperm nucleus with the egg nucleus. The syngamy belonged to peremitotic type. A great deal of starch grains in the embryo sac disappeared during fertilization. The endosperm was nuclear type and becomed a cel 31 days after pollination. The endosperm was characterized by a dense cytoplasm rich in protein. No discrete starch grains were observed in endosperm. Afterwards, the endosperm was consumed by the developing embryo, thus the mature seeds were non-endospermous. The zygote was dormant for 6–8 days. During the dormency, many striking changes took place, and then, the zygotes showed more pronounced polarity. These changes included the shinkage of the large vacuole, the reduced size, the reappearance of large vacuole, the enlarging of the size. The embryogenesis conformed to the Solanad type. The ovules matured into seeds successively 44 days after pollination. The mature embryo was straight. Two cotyledons folded each other.  相似文献   

20.
Cross- and partially cross-pollinated capitula of Cichorium intybus (Compositae, Lactuceae) were examined for a study of normal and seedless fruit development respectively. Embryos develop according to the Asterad pattern, and the free-nuclear endosperm becomes cellular 15–17 hrs after pollination. A zone of disorganized cellular material surrounds the embryo sac at anthesis, and, in normal achenes, this zone expands as the seed develops. Initially the developing seed elongates and comes into contact with the top of the ovary by 48 hrs. In contrast to this pattern, the ovule in developing seedless achenes degenerates within 72 hrs. Irregularities, such as an abnormally proliferating endothelium, embryo formation without endosperm, and endosperm formation without an embryo often accompany this degeneration. Differentiation of the pericarp in seeded achenes begins between 48 and 72 hrs, starting at the apex and proceeding basipetally; in seedless fruits the process is similar though initiated somewhat later. The normal pericarp at maturity exhibits a pigmented exocarp, a broad mesocarp of thick-walled lignified cells, and a tenuous endocarp. In seedless achenes the fruit coat is similar except that the exocarp is colorless and the cells of the mesocarp are relatively small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号