首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Dengue dynamics are driven by complex interactions between human-hosts, mosquito-vectors and viruses that are influenced by environmental and climatic factors. The objectives of this study were to analyze and model the relationships between climate, Aedes aegypti vectors and dengue outbreaks in Noumea (New Caledonia), and to provide an early warning system.

Methodology/Principal Findings

Epidemiological and meteorological data were analyzed from 1971 to 2010 in Noumea. Entomological surveillance indices were available from March 2000 to December 2009. During epidemic years, the distribution of dengue cases was highly seasonal. The epidemic peak (March–April) lagged the warmest temperature by 1–2 months and was in phase with maximum precipitations, relative humidity and entomological indices. Significant inter-annual correlations were observed between the risk of outbreak and summertime temperature, precipitations or relative humidity but not ENSO. Climate-based multivariate non-linear models were developed to estimate the yearly risk of dengue outbreak in Noumea. The best explicative meteorological variables were the number of days with maximal temperature exceeding 32°C during January–February–March and the number of days with maximal relative humidity exceeding 95% during January. The best predictive variables were the maximal temperature in December and maximal relative humidity during October–November–December of the previous year. For a probability of dengue outbreak above 65% in leave-one-out cross validation, the explicative model predicted 94% of the epidemic years and 79% of the non epidemic years, and the predictive model 79% and 65%, respectively.

Conclusions/Significance

The epidemic dynamics of dengue in Noumea were essentially driven by climate during the last forty years. Specific conditions based on maximal temperature and relative humidity thresholds were determinant in outbreaks occurrence. Their persistence was also crucial. An operational model that will enable health authorities to anticipate the outbreak risk was successfully developed. Similar models may be developed to improve dengue management in other countries.  相似文献   

2.
Local weather influences the transmission of the dengue virus. Most studies analyzing the relationship between dengue and climate are based on relatively coarse aggregate measures such as mean temperature. Here, we include both mean temperature and daily fluctuations in temperature in modelling dengue transmission in Dhaka, the capital of Bangladesh. We used a negative binomial generalized linear model, adjusted for rainfall, anomalies in sea surface temperature (an index for El Niño-Southern Oscillation), population density, the number of dengue cases in the previous month, and the long term temporal trend in dengue incidence. In addition to the significant associations of mean temperature and temperature fluctuation with dengue incidence, we found interaction of mean and temperature fluctuation significantly influences disease transmission at a lag of one month. High mean temperature with low fluctuation increases dengue incidence one month later. Besides temperature, dengue incidence was also influenced by sea surface temperature anomalies in the current and previous month, presumably as a consequence of concomitant anomalies in the annual rainfall cycle. Population density exerted a significant positive influence on dengue incidence indicating increasing risk of dengue in over-populated Dhaka. Understanding these complex relationships between climate, population, and dengue incidence will help inform outbreak prediction and control.  相似文献   

3.
Research is needed to create early warnings of dengue outbreaks to inform stakeholders and control the disease. This analysis composes of a comparative set of prediction models including only meteorological variables; only lag variables of disease surveillance; as well as combinations of meteorological and lag disease surveillance variables. Generalized linear regression models were used to fit relationships between the predictor variables and the dengue surveillance data as outcome variable on the basis of data from 2001 to 2010. Data from 2011 to 2013 were used for external validation purposed of prediction accuracy of the model. Model fit were evaluated based on prediction performance in terms of detecting epidemics, and for number of predicted cases according to RMSE and SRMSE, as well as AIC. An optimal combination of meteorology and autoregressive lag terms of dengue counts in the past were identified best in predicting dengue incidence and the occurrence of dengue epidemics. Past data on disease surveillance, as predictor alone, visually gave reasonably accurate results for outbreak periods, but not for non-outbreaks periods. A combination of surveillance and meteorological data including lag patterns up to a few years in the past showed most predictive of dengue incidence and occurrence in Yogyakarta, Indonesia. The external validation showed poorer results than the internal validation, but still showed skill in detecting outbreaks up to two months ahead. Prior studies support the fact that past meteorology and surveillance data can be predictive of dengue. However, to a less extent has prior research shown how the longer-term past disease incidence data, up to years, can play a role in predicting outbreaks in the coming years, possibly indicating cross-immunity status of the population.  相似文献   

4.

Background

Dengue fever is a leading cause of severe illness and hospitalization in Taiwan. This study sought to elucidate the linkage between dengue fever incidence and climate factors.

Results

The result indicated that temperature, accumulated rainfall, and sunshine play an important role in the transmission cycles of dengue fever. A predictive model equation plots dengue fever incidence versus temperature, rainfall, and sunshine, and it suggests that temperature, rainfall, and sunshine are significantly correlated with dengue fever incidence.

Conclusions

The data suggests that climate factors are important determinants of dengue fever in southern Taiwan. Dengue fever viruses and the mosquito vectors are sensitive to their environment. Temperature, rainfall and sunshine have well-defined roles in the transmission cycle. This finding suggests that control of mosquito by climatic factor during high temperature seasons may be an important strategy for containing the burden of dengue fever.
  相似文献   

5.
BackgroundDespite dengue dynamics being driven by complex interactions between human hosts, mosquito vectors and viruses that are influenced by climate factors, an operational model that will enable health authorities to anticipate the outbreak risk in a dengue non-endemic area has not been developed. The objectives of this study were to evaluate the temporal relationship between meteorological variables, entomological surveillance indices and confirmed dengue cases; and to establish the threshold for entomological surveillance indices including three mosquito larval indices [Breteau (BI), Container (CI) and House indices (HI)] and one adult index (AI) as an early warning tool for dengue epidemic.Conclusion/SignificanceThere was little evidence of quantifiable association among vector indices, meteorological factors and dengue transmission that could reliably be used for outbreak prediction. Our study here provided the proof-of-concept of how to search for the optimal model and determine the threshold for dengue epidemics. Since those factors used for prediction varied, depending on the ecology and herd immunity level under different geological areas, different thresholds may be developed for different countries using a similar structure of the two-stage model.  相似文献   

6.
As a common vector-borne disease, dengue fever remains challenging to predict due to large variations in epidemic size across seasons driven by a number of factors including population susceptibility, mosquito density, meteorological conditions, geographical factors, and human mobility. An ensemble forecast system for dengue fever is first proposed that addresses the difficulty of predicting outbreaks with drastically different scales. The ensemble forecast system based on a susceptible-infected-recovered (SIR) type of compartmental model coupled with a data assimilation method called the ensemble adjusted Kalman filter (EAKF) is constructed to generate real-time forecasts of dengue fever spread dynamics. The model was informed by meteorological and mosquito density information to depict the transmission of dengue virus among human and mosquito populations, and generate predictions. To account for the dramatic variations of outbreak size in different seasons, the effective population size parameter that is sequentially updated to adjust the predicted outbreak scale is introduced into the model. Before optimizing the transmission model, we update the effective population size using the most recent observations and historical records so that the predicted outbreak size is dynamically adjusted. In the retrospective forecast of dengue outbreaks in Guangzhou, China during the 2011–2017 seasons, the proposed forecast model generates accurate projections of peak timing, peak intensity, and total incidence, outperforming a generalized additive model approach. The ensemble forecast system can be operated in real-time and inform control planning to reduce the burden of dengue fever.  相似文献   

7.
BackgroundWith enough advanced notice, dengue outbreaks can be mitigated. As a climate-sensitive disease, environmental conditions and past patterns of dengue can be used to make predictions about future outbreak risk. These predictions improve public health planning and decision-making to ultimately reduce the burden of disease. Past approaches to dengue forecasting have used seasonal climate forecasts, but the predictive ability of a system using different lead times in a year-round prediction system has been seldom explored. Moreover, the transition from theoretical to operational systems integrated with disease control activities is rare.Methods and findingsWe introduce an operational seasonal dengue forecasting system for Vietnam where Earth observations, seasonal climate forecasts, and lagged dengue cases are used to drive a superensemble of probabilistic dengue models to predict dengue risk up to 6 months ahead. Bayesian spatiotemporal models were fit to 19 years (2002–2020) of dengue data at the province level across Vietnam. A superensemble of these models then makes probabilistic predictions of dengue incidence at various future time points aligned with key Vietnamese decision and planning deadlines. We demonstrate that the superensemble generates more accurate predictions of dengue incidence than the individual models it incorporates across a suite of time horizons and transmission settings. Using historical data, the superensemble made slightly more accurate predictions (continuous rank probability score [CRPS] = 66.8, 95% CI 60.6–148.0) than a baseline model which forecasts the same incidence rate every month (CRPS = 79.4, 95% CI 78.5–80.5) at lead times of 1 to 3 months, albeit with larger uncertainty. The outbreak detection capability of the superensemble was considerably larger (69%) than that of the baseline model (54.5%). Predictions were most accurate in southern Vietnam, an area that experiences semi-regular seasonal dengue transmission. The system also demonstrated added value across multiple areas compared to previous practice of not using a forecast. We use the system to make a prospective prediction for dengue incidence in Vietnam for the period May to October 2020. Prospective predictions made with the superensemble were slightly more accurate (CRPS = 110, 95% CI 102–575) than those made with the baseline model (CRPS = 125, 95% CI 120–168) but had larger uncertainty. Finally, we propose a framework for the evaluation of probabilistic predictions. Despite the demonstrated value of our forecasting system, the approach is limited by the consistency of the dengue case data, as well as the lack of publicly available, continuous, and long-term data sets on mosquito control efforts and serotype-specific case data.ConclusionsThis study shows that by combining detailed Earth observation data, seasonal climate forecasts, and state-of-the-art models, dengue outbreaks can be predicted across a broad range of settings, with enough lead time to meaningfully inform dengue control. While our system omits some important variables not currently available at a subnational scale, the majority of past outbreaks could be predicted up to 3 months ahead. Over the next 2 years, the system will be prospectively evaluated and, if successful, potentially extended to other areas and other climate-sensitive disease systems.  相似文献   

8.
Malaria is a major public health problem especially in the tropics with the potential to significantly increase in response to changing weather and climate. This study explored the impact of weather and climate and its variability on the occurrence and transmission of malaria in Akure, the tropical rain forest area of southwest and Kaduna, in the savanna area of Nigeria. We investigate this supposition by looking at the relationship between rainfall, relative humidity, minimum and maximum temperature, and malaria at the two stations. This study uses monthly data of 7 years (2001–2007) for both meteorological data and record of reported cases of malaria infection. Autoregressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Of all the models tested, the ARIMA (1, 0, 1) model fits the malaria incidence data best for Akure and Kaduna according to normalized Bayesian information criterion (BIC) and goodness-of-fit criteria. Humidity and rainfall have almost the same trend of association in all the stations while maximum temperature share the same negative association at southwestern stations and positive in the northern station. Rainfall and humidity have a positive association with malaria incidence at lag of 1 month. In all, we found that minimum temperature is not a limiting factor for malaria transmission in Akure but otherwise in the other stations.  相似文献   

9.
10.
Dengue fever is a systemic viral infection of epidemic proportions in tropical countries. The incidence of dengue fever is ever increasing and has doubled over the last few decades. Estimated 50million new cases are detected each year and close to 10000 deaths occur each year. Epidemics are unpredictable and unprecedented. When epidemics occur, health services are over whelmed leading to overcrowding of hospitals. At present there is no evidence that dengue epidemics can be predicted. Since the breeding of the dengue mosquito is directly influenced by environmental factors, it is plausible that epidemics could be predicted using weather data. We hypothesized that there is a mathematical relationship between incidence of dengue fever and environmental factors and if such relationship exists, new cases of dengue fever in the succeeding months can be predicted using weather data of the current month. We developed a mathematical model using machine learning technique. We used Island wide dengue epidemiology data, weather data and population density in developing the model. We used incidence of dengue fever, average rain fall, humidity, wind speed, temperature and population density of each district in the model. We found that the model is able to predict the incidence of dengue fever of a given month in a given district with precision (RMSE between 18- 35.3). Further, using weather data of a given month, the number of cases of dengue in succeeding months too can be predicted with precision (RMSE 10.4—30). Health authorities can use existing weather data in predicting epidemics in the immediate future and therefore measures to prevent new cases can be taken and more importantly the authorities can prepare local authorities for outbreaks.  相似文献   

11.

Background

Travelers who acquire dengue infection are often routes for virus transmission to other regions. Nevertheless, the interplay between infected travelers, climate, vectors, and indigenous dengue incidence remains unclear. The role of foreign-origin cases on local dengue epidemics thus has been largely neglected by research. This study investigated the effect of both imported dengue and local meteorological factors on the occurrence of indigenous dengue in Taiwan.

Methods and Principal Findings

Using logistic and Poisson regression models, we analyzed bi-weekly, laboratory-confirmed dengue cases at their onset dates of illness from 1998 to 2007 to identify correlations between indigenous dengue and imported dengue cases (in the context of local meteorological factors) across different time lags. Our results revealed that the occurrence of indigenous dengue was significantly correlated with temporally-lagged cases of imported dengue (2–14 weeks), higher temperatures (6–14 weeks), and lower relative humidity (6–20 weeks). In addition, imported and indigenous dengue cases had a significant quantitative relationship in the onset of local epidemics. However, this relationship became less significant once indigenous epidemics progressed past the initial stage.

Conclusions

These findings imply that imported dengue cases are able to initiate indigenous epidemics when appropriate weather conditions are present. Early detection and case management of imported cases through rapid diagnosis may avert large-scale epidemics of dengue/dengue hemorrhagic fever. The deployment of an early-warning surveillance system, with the capacity to integrate meteorological data, will be an invaluable tool for successful prevention and control of dengue, particularly in non-endemic countries.  相似文献   

12.
A literature survey and analysis was conducted to describe the epidemiology of dengue disease in Malaysia between 2000 and 2012. Published literature was searched for epidemiological studies of dengue disease, using specific search strategies for each electronic database; 237 relevant data sources were identified, 28 of which fulfilled the inclusion criteria. The epidemiology of dengue disease in Malaysia was characterized by a non-linear increase in the number of reported cases from 7,103 in 2000 to 46,171 in 2010, and a shift in the age range predominance from children toward adults. The overall increase in dengue disease was accompanied by a rise in the number, but not the proportion, of severe cases. The dominant circulating dengue virus serotypes changed continually over the decade and differed between states. Several gaps in epidemiological knowledge were identified; in particular, studies of regional differences, age-stratified seroprevalence, and hospital admissions.

Protocol registration

PROSPERO #CRD42012002293

Author summary

Dengue disease is a tropical and subtropical mosquito-borne viral illness, and is a major health concern in Malaysia. We conducted this literature analysis and review to describe the epidemiology of dengue disease in Malaysia between 2000 and 2012, to determine the impact of dengue disease on the Malaysian population, and to identify future research priorities. We used well-defined methods to search and identify relevant research, and data were selected according to predetermined inclusion criteria. This long-term review highlights the changing epidemiology of dengue fever in Malaysia. Although the overall incidence has stabilized in recent years, dengue disease remains a public health burden. Our review demonstrates an increased incidence of all forms of dengue disease and a predominantly adult age distribution. Changes in circulating dengue virus serotypes may have implications for the incidence and severity of dengue disease. Increasing levels of rainfall, humidity, temperature, and urbanization have been identified as risk factors for dengue disease outbreak. We believe that the recent improvements to the surveillance system in Malaysia should, if pursued over the next few years, greatly improve our understanding of the burden of dengue fever and enable us to monitor the impact of disease control measures in the future.  相似文献   

13.

Background

Accurate prediction of dengue incidence levels weeks in advance of an outbreak may reduce the morbidity and mortality associated with this neglected disease. Therefore, models were developed to predict high and low dengue incidence in order to provide timely forewarnings in the Philippines.

Methods

Model inputs were chosen based on studies indicating variables that may impact dengue incidence. The method first uses Fuzzy Association Rule Mining techniques to extract association rules from these historical epidemiological, environmental, and socio-economic data, as well as climate data indicating future weather patterns. Selection criteria were used to choose a subset of these rules for a classifier, thereby generating a Prediction Model. The models predicted high or low incidence of dengue in a Philippines province four weeks in advance. The threshold between high and low was determined relative to historical incidence data.

Principal Findings

Model accuracy is described by Positive Predictive Value (PPV), Negative Predictive Value (NPV), Sensitivity, and Specificity computed on test data not previously used to develop the model. Selecting a model using the F0.5 measure, which gives PPV more importance than Sensitivity, gave these results: PPV = 0.780, NPV = 0.938, Sensitivity = 0.547, Specificity = 0.978. Using the F3 measure, which gives Sensitivity more importance than PPV, the selected model had PPV = 0.778, NPV = 0.948, Sensitivity = 0.627, Specificity = 0.974. The decision as to which model has greater utility depends on how the predictions will be used in a particular situation.

Conclusions

This method builds prediction models for future dengue incidence in the Philippines and is capable of being modified for use in different situations; for diseases other than dengue; and for regions beyond the Philippines. The Philippines dengue prediction models predicted high or low incidence of dengue four weeks in advance of an outbreak with high accuracy, as measured by PPV, NPV, Sensitivity, and Specificity.  相似文献   

14.
BackgroundLeptospirosis is an important public health problem affecting vulnerable urban slum populations in developing country settings. However, the complex interaction of meteorological factors driving the temporal trends of leptospirosis remain incompletely understood.Methods and findingsFrom March 1996—March 2010, we investigated the association between the weekly incidence of leptospirosis and meteorological anomalies in the city of Salvador, Brazil by using a dynamic generalized linear model that accounted for time lags, overall trend, and seasonal variation. Our model showed an increase of leptospirosis cases associated with higher than expected rainfall, lower than expected temperature and higher than expected humidity. There was a lag of one-to-two weeks between weekly values for significant meteorological variables and leptospirosis incidence. Independent of the season, a weekly cumulative rainfall anomaly of 20 mm increased the risk of leptospirosis by 12% compared to a week following the expected seasonal pattern. Finally, over the 14-year study period, the annual incidence of leptospirosis decreased significantly by a factor of 2.7 (8.3 versus 3.0 per 100,000 people), independently of variations in climate.ConclusionsStrategies to control leptospirosis should focus on avoiding contact with contaminated sources of Leptospira as well as on increasing awareness in the population and health professionals within the short time window after low-level or extreme high-level rainfall events. Increased leptospirosis incidence was restricted to one-to-two weeks after those events suggesting that infectious Leptospira survival may be limited to short time intervals.  相似文献   

15.
BackgroundIn the past few decades, several researchers have proposed highly accurate prediction models that have typically relied on climate parameters. However, climate factors can be unreliable and can lower the effectiveness of prediction when they are applied in locations where climate factors do not differ significantly. The purpose of this study was to improve a dengue surveillance system in areas with similar climate by exploiting the infection rate in the Aedes aegypti mosquito and using the support vector machine (SVM) technique for forecasting the dengue morbidity rate.ConclusionsThe infection rates of the Ae. aegypti female mosquitoes and larvae improved the morbidity rate forecasting efficiency better than the climate parameters used in classical frameworks. We demonstrated that the SVM-R-based model has high generalization performance and obtained the highest prediction performance compared to classical models as measured by the accuracy, sensitivity, specificity, and mean absolute error (MAE).  相似文献   

16.
Weather factors are widely studied for their effects on indicating dengue incidence trends. However, these studies have been limited due to the complex epidemiology of dengue, which involves dynamic interplay of multiple factors such as herd immunity within a population, distinct serotypes of the virus, environmental factors and intervention programs. In this study, we investigate the impact of weather factors on dengue in Singapore, considering the disease epidemiology and profile of virus serotypes. A Poisson regression combined with Distributed Lag Non-linear Model (DLNM) was used to evaluate and compare the impact of weekly Absolute Humidity (AH) and other weather factors (mean temperature, minimum temperature, maximum temperature, rainfall, relative humidity and wind speed) on dengue incidence from 2001 to 2009. The same analysis was also performed on three sub-periods, defined by predominant circulating serotypes. The performance of DLNM regression models were then evaluated through the Akaike''s Information Criterion. From the correlation and DLNM regression modeling analyses of the studied period, AH was found to be a better predictor for modeling dengue incidence than the other unique weather variables. Whilst mean temperature (MeanT) also showed significant correlation with dengue incidence, the relationship between AH or MeanT and dengue incidence, however, varied in the three sub-periods. Our results showed that AH had a more stable impact on dengue incidence than temperature when virological factors were taken into consideration. AH appeared to be the most consistent factor in modeling dengue incidence in Singapore. Considering the changes in dominant serotypes, the improvements in vector control programs and the inconsistent weather patterns observed in the sub-periods, the impact of weather on dengue is modulated by these other factors. Future studies on the impact of climate change on dengue need to take all the other contributing factors into consideration in order to make meaningful public policy recommendations.  相似文献   

17.

Background

A dengue early warning system aims to prevent a dengue outbreak by providing an accurate prediction of a rise in dengue cases and sufficient time to allow timely decisions and preventive measures to be taken by local authorities. This study seeks to identify the optimal lead time for warning of dengue cases in Singapore given the duration required by a local authority to curb an outbreak.

Methodology and Findings

We developed a Poisson regression model to analyze relative risks of dengue cases as functions of weekly mean temperature and cumulative rainfall with lag times of 1–5 months using spline functions. We examined the duration of vector control and cluster management in dengue clusters > = 10 cases from 2000 to 2010 and used the information as an indicative window of the time required to mitigate an outbreak. Finally, we assessed the gap between forecast and successful control to determine the optimal timing for issuing an early warning in the study area. Our findings show that increasing weekly mean temperature and cumulative rainfall precede risks of increasing dengue cases by 4–20 and 8–20 weeks, respectively. These lag times provided a forecast window of 1–5 months based on the observed weather data. Based on previous vector control operations, the time needed to curb dengue outbreaks ranged from 1–3 months with a median duration of 2 months. Thus, a dengue early warning forecast given 3 months ahead of the onset of a probable epidemic would give local authorities sufficient time to mitigate an outbreak.

Conclusions

Optimal timing of a dengue forecast increases the functional value of an early warning system and enhances cost-effectiveness of vector control operations in response to forecasted risks. We emphasize the importance of considering the forecast-mitigation gaps in respective study areas when developing a dengue forecasting model.  相似文献   

18.

Background

An estimated 2.4 billion people live in areas at risk of dengue transmission, therefore the factors determining the establishment of endemic dengue in areas where transmission suitability is marginal is of considerable importance. Hanoi, Vietnam is such an area, and following a large dengue outbreak in 2009, we set out to determine if dengue is emerging in Hanoi.

Methods and Principal Findings

We undertook a temporal and spatial analysis of 25,983 dengue cases notified in Hanoi between 1998 and 2009. Age standardized incidence rates, standardized age of infection, and Standardized Morbidity Ratios (SMR) were calculated. A quasi-Poisson regression model was used to determine if dengue incidence was increasing over time. Wavelet analysis was used to explore the periodicity of dengue transmission and the association with climate variables. After excluding the two major outbreak years of 1998 and 2009 and correcting for changes in population age structure, we identified a significant annual increase in the incidence of dengue cases over the period 1999–2008 (incidence rate ratio  = 1.38, 95% confidence interval  = 1.20–1.58, p value  = 0.002). The age of notified dengue cases in Hanoi is high, with a median age of 23 years (mean 26.3 years). After adjusting for changes in population age structure, there was no statistically significant change in the median or mean age of dengue cases over the period studied. Districts in the central, highly urban, area of Hanoi have the highest incidence of dengue (SMR>3).

Conclusions

Hanoi is a low dengue transmission setting where dengue incidence has been increasing year on year since 1999. This trend needs to be confirmed with serological surveys, followed by studies to determine the underlying drivers of this emergence. Such studies can provide insights into the biological, demographic, and environmental changes associated with vulnerability to the establishment of endemic dengue.  相似文献   

19.
Two years of hourly measurements of global solar radiation and downward longwave radiation were used to estimate the radiative balance of Lake Banyoles, a small karstic Mediterranean lake. The performance of several empirical estimation equations on an hourly and a daily basis were evaluated taking into account various meteorological conditions. The new coefficients in the formulae for the effective emittance, which have been derived from meteorological data, demonstrate that these coefficients strongly depend on the radiation climate of the respective area. In the Mediterranean climate of Lake Banyoles, changes in wind direction and relative humidity after the vertical distribution of vapour pressure beneath the cloud layer. Different median experimental errors were found depending on the time scale and cloud cover. Comparison of global solar radiation measured at Banyoles with estimated values shows good agreement for clear skies, especially for daily means. On a daily scale, the root mean squared (r.m.s.) error was found to be 8% for solar radiation and 12% for longwave radiation. On an hourly scale, different r.m.s. errors were obtained depending on the degree of cloud cover.  相似文献   

20.
A longitudinal study was conducted in Manaus, Brazil, to monitor changes of adult Aedes aegypti (L.) abundance. The objectives were to compare mosquito collections of two trap types, to characterise temporal changes of the mosquito population, to investigate the influence of meteorological variables on mosquito collections and to analyse the association between mosquito collections and dengue incidence. Mosquito monitoring was performed fortnightly using MosquiTRAPs (MQT) and BG-Sentinel (BGS) traps between December 2008-June 2010. The two traps revealed opposing temporal infestation patterns, with highest mosquito collections of MQTs during the dry season and highest collections of BGS during the rainy seasons. Several meteorological variables were significant predictors of mosquito collections in the BGS. The best predictor was the relative humidity, lagged two weeks (in a positive relationship). For MQT, only the number of rainy days in the previous week was significant (in a negative relationship). The correlation between monthly dengue incidence and mosquito abundance in BGS and MQT was moderately positive and negative, respectively. Catches of BGS traps reflected better the dynamic of dengue incidence. The findings help to understand the effects of meteorological variables on mosquito infestation indices of two different traps for adult dengue vectors in Manaus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号