首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
THE GRANA OF STARCH-FREE CHLOROPLASTS OF NICOTIANA RUSTICA   总被引:2,自引:1,他引:1       下载免费PDF全文
The grana of chloroplasts of starch-free leaves of Nicotiana rustica are described in detail. Leaf sections were fixed in 2.5 per cent KMnO4 and embedded in mixtures of butyl and ethyl methacrylate. Chain length of the polymer was modified by use of a transfer agent. The grana are composed of compartments consisting of electron-scattering partitions and electron-transparent loculi. Compartments are not open to the stroma so that the grana are distinct subplastid organelles. Adjacent grana are connected by an anastomosing fretwork system composed of flexuous channels bordered by electron-scattering membranes. Ten different kinds of granum margins are described. These marginal variations depend upon grana-fretwork connections and internal marginal connections between adjacent loculi. A study of serial sections suggests, at least in some plastids, the occurrence of a possible orderly spiral arrangement of compartment-fretwork connections. Adjacent grana may have common compartments. Grana may branch. Variations in shape may depend upon the angle the section bears to the axis of the cylinder. This should also influence the relative thickness and sharpness of the partitions. Since all shapes and variations in partition thickness and sharpness cannot be accounted for on the basis of the orientation of the grana, such variations probably occur naturally. Grana vary in size, ranging from those few which have a single partition to those having 50 or more compartments which extend completely through the width of a plastid. Relationships between grana of different sizes and between compartments and frets indicate the possibility of growth of grana from union or extension of compartments and formation of compartments from the union of frets.  相似文献   

2.
A comparison of bean chloroplasts after being fixed in potassiumpermanganate, osmium, and formaldehyde coupled with negativestaining shows that the general organization of the chloroplastis similar in all cases. However, the mature chloroplasts ofbean vary considerably in the extent and orientation of theinternal membranes—the grana and the interconnecting membranesbetween the grana. The interconnecting membranes are thin, branching,flexuous structures. This is illustrated by serial sectionsand by cross- and face-view sections of osmium- fixed chloroplastsand the best model, which allows for a considerable flexibilityin the orientation of the grana and also describes the thininterconnecting membranes between the grana, is the grana-fretworksystem proposed by Weier (1961). Furthermore, the comparative studies show that the internalregions of grana are separated from the stroma and that thegrana-fretwork systems appear to be a continuous membrane system.This membrane is single along the frets, end compartments, andgranal margins. It is double in the partitions of the granabut separated by a component, possibly a cementing material,which does not stain. It is suggested that this membrane isstructurally similar in the chloroplasts of higher plants, butthat its overall organization may vary from one plant to another.  相似文献   

3.
The grana-fretwork system was reconstructed from serial sections representing 0.5 μm slice, in profile view, from the midregion of a chloroplast of Nicotiana tabacum. Reconstructions show grana in multiple strata. The fretwork integrates the grana in all three dimensions. Large grana are visualized as complex structures consisting of two or more eccentrically stacked solids that vary in height and diameter. The close spacing and overlapping positions of grana in the plastid explain why phase microscopy cannot be used to demonstrate adequately the numerous strata of grana within a chloroplast. The grana are not far enough apart to allow for successful optical sectioning of a plastid in face view. In profile view no distinct grana can be resolved because the grana-fretwork system has the aspect of a “honeycomb.” Thus, observations with a light microscope are not adequate to determine the arrangement of grana in a chloroplast, and the recently-proposed model showing all grana of a plastid to be arranged in a single spiral ribbon must be rejected as incompatible with properties of real plastids.  相似文献   

4.
Healthy chloroplasts of Hordeum vulgare are compared with chloroplasts subjected to abnormal stresses such as in situ disruption, isolation, isolation plus washing in 0.5 m sucrose, and isolation plus washing in 0.5 m sucrose and distilled H2O. Normal chloroplasts resemble those of Nicotiana rustica and Phaseolus vulgaris in being composed of compartmented grana connected by an anastomosing fretwork system. They differ in having a somewhat greater incidence of parallel frets and double partitions. Under conditions of stress both grana and fretwork undergo varying degrees of swelling, and the double partition maintains its structural integrity. Grana are more resistant to abnormal stresses than the fretwork. Fret connections with more than 3 grana do not generally occur, but in some micrographs a single pathway may be traced through several grana. Washing isolated chloroplasts in distilled water results in an enlargement involving compartments of 2 or more grana together with the associated fretwork membranes. These results indicate that the grana in mature chloroplasts of Hordeum vulgare, like those of Nicotiana rustica and Phaseolus vulgaris, are compartmented structural units and not a series of localized aligned thickenings in regular extensive discs. These enlargements are complex structures comprising the membranes and spaces of both grana and frets. The swelling indicates an increase of locular and fret channel substance and possibly an enlargement of membrane surfaces. Dried down on grids, the compartments and frets appear as flat discs with radial appendages.  相似文献   

5.
Weier , T. Elliot . (U. California, Davis.) The ultramicro structure of starch-free chloroplasts of fully expanded leaves of Nicotiana rustica. Amer. Jour. Bot. 48(7): 615–630. Illus. 1961.—The grana of starch-free chloroplasts of fully expanded leaves of Nicotiana rustica are distinct, compartmented, subplastid entities. They vary in size, shape, orientation and in the distinctness with which their compartments are delineated. It has not been possible to equate accurately their micro and ultramicro appearances. At the ultramicro level, the grana are connected with each other at irregular intervals by a system of anastomosing channels. The partitions forming the compartments of the grana may be coarse or very fine but are constant in appearance in any given chloroplast. The loculi enclosed by the partitions may vary in size with a granum, depending upon their location or upon the physiological activity of the chloroplast. The stroma does not penetrate the grana; it may be relatively fluid and the grana-fretwork system may move within it. A double envelope, which may have pores connecting stroma and hyaloplasm, surrounds the chloroplasts. Materials may collect between the surfaces of the envelope. There is considerable variation in the ultramicro details of chloroplast structure of Nicotiana rustica. It is not yet possible to distinguish accurately between those variations which may be of physiological significance and those which may be induced by processing.  相似文献   

6.
Recent work on the domain organization of the thylakoid is reviewed and a model for the thylakoid of higher plants is presented. According to this model the thylakoid membrane is divided into three main domains: the stroma lamellae, the grana margins and the grana core (partitions). These have different biochemical compositions and have specialized functions. Linear electron transport occurs in the grana while cyclic electron transport is restricted to the stroma lamellae. This model is based on the following results and considerations. (1) There is no good candidate for a long-range mobile redox carrier between PS II in the grana and PS I in the stroma lamellae. The lateral diffusion of plastoquinone and plastocyanin is severely restricted by macromolecular crowding in the membrane and the lumen respectively. (2) There is an excess of 14±18% chlorophyll associated with PS I over that of PS II. This excess is assumed to be localized in the stroma lamellae where PS I drives cyclic electron transport. (3) For several plant species, the stroma lamellae account for 20±3% of the thylakoid membrane and the grana (including the appressed regions, margins and end membranes) for the remaining 80%. The amount of stroma lamellae (20%) corresponds to the excess (14–18%) of chlorophyll associated with PS I. (4) The model predicts a quantum requirement of about 10 quanta per oxygen molecule evolved, which is in good agreement with experimentally observed values. (5) There are at least two pools of each of the following components: PS I, PS II, cytochrome bf complex, plastocyanin, ATP synthase and plastoquinone. One pool is in the grana and the other in the stroma compartments. So far, it has been demonstrated that the PS I, PS II and cytochrome bf complexes each differ in their respective pools.Abbreviations PS I and PS II Photosystem I and II - P 700 reaction center of PS I - LHC II light-harvesting complex II  相似文献   

7.
Chloroplasts of land plants characteristically contain grana, cylindrical stacks of thylakoid membranes. A granum consists of a core of appressed membranes, two stroma-exposed end membranes, and margins, which connect pairs of grana membranes at their lumenal sides. Multiple forces contribute to grana stacking, but it is not known how the extreme curvature at margins is generated and maintained. We report the identification of the CURVATURE THYLAKOID1 (CURT1) protein family, conserved in plants and cyanobacteria. The four Arabidopsis thaliana CURT1 proteins (CURT1A, B, C, and D) oligomerize and are highly enriched at grana margins. Grana architecture is correlated with the CURT1 protein level, ranging from flat lobe-like thylakoids with considerably fewer grana margins in plants without CURT1 proteins to an increased number of membrane layers (and margins) in grana at the expense of grana diameter in overexpressors of CURT1A. The endogenous CURT1 protein in the cyanobacterium Synechocystis sp PCC6803 can be partially replaced by its Arabidopsis counterpart, indicating that the function of CURT1 proteins is evolutionary conserved. In vitro, Arabidopsis CURT1A proteins oligomerize and induce tubulation of liposomes, implying that CURT1 proteins suffice to induce membrane curvature. We therefore propose that CURT1 proteins modify thylakoid architecture by inducing membrane curvature at grana margins.  相似文献   

8.
Plastid organization within phenotypically green leaf tissue that forms in albino plants of a genetic albino strain of Nicotiana has been examined with the transmission electron microscope. Studies revealed the presence of plastids with and without thylakoids. When present, thylakoids were loosely and irregularly scattered in the stroma or organized either into several large spindle-shaped grana or into a single compound granum with deeply indented margins. Plastids without thylakoids were vesiculated and resembled the typical genetic albino type. Plastid types were not segregrated into individual cells and no plastid type appeared to be typical for the mutant tissue. Orientation of grana and thylakoid membrane associations were noted as well as the presence of osmiophilic globules, starch grains and DNA-like fibrillar areas.  相似文献   

9.
Thomson , W. W., and T. E. Weier . (U. California, Davis.) The fine structure of chloroplasts from mineral-deficient leaves of Phaseolus vulgaris. Amer. Jour. Bot. 49(10): 1047–1055. Illus. 1962.—An electron microscopic study of the changes in chloroplast structure as affected by the stress of nutrient deficiencies is described. Each deficiency produces characteristic changes in the ultrastructure of the chloroplast. In phosphorus and potassium deficiency the plastids develop fully before changes occur; then the grana break down into diffuse, electron-dense masses, forming a highly ordered lamellar system. The plastids of plants low in nitrogen and magnesium do not reach full development before changes occur. In nitrogen-deficient plastids, the stroma is greatly diminished and the grana compartments are swollen and reduced in number. In magnesium deficiency, the grana-fretwork system becomes disorganized and many star-bodies are formed. The absence of zinc blocks the full development of a grana-fretwork system, and large vacuoles are formed in conjunction with grana compartments.  相似文献   

10.
P. J. Shaw  J. A. Henwood 《Planta》1985,165(3):333-339
The proteins ribulose 1,5-bisphosphate carboxylase/oxygenase, ATP synthase, light-harvesting chlorophyll a/b protein, and cytochrome f, have been localized in mesophyll chloroplasts of barley (Hordeum vulgare L.) by electron microscopy of immunogold-labelled sections. The light-harvesting chlorophyll a/b protein and cytochrome f are shown to be present in the grana, both within the stacks and at the margins, and in the stromal membranes. Although the absolute amount of labelling for these proteins is greater in the grana than in the stromal membranes, when expressed as label/membrane length the partitioning appears approximately equal between appressed and non-appressed membranes for both the light-harvesting chlorophyll a/b protein and cytochrome f. ATP synthase is restricted to the non-appressed thylakoid membranes, and ribulose 1,5-bisphosphate carboxylase/oxygenase is uniformly distributed through the stromal contents.Abbreviations CF1 ATP synthase - LHCPII light-harvesting chlorophyll a/b protein - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

11.
The grana margins of plant thylakoid membranes   总被引:1,自引:0,他引:1  
Plant thylakoid membranes contain three structurally distinct domains: the planar appressed membranes of the grana; the planar non-appressed stroma thylakoids; and the highly curved, non-appressed margins of the grana. Evidence is presented to suggest that the grana margins form a significant structural domain, which has hitherto been neglected. If indeed the grana margins contain some of the cytochrome b/f complex, photosystem (PS) I complex and ATP synthase, they form a third functional domain of the laterally heterogeneous continuous thylakoid membrane network. The consequences of grana margins containing complexes are explored with respect to linear electron transport under light-saturating and light-limiting conditions, non-cyclic vs cyclic photophorylation, and the regulation of light energy distribution to both PS I and PS II.  相似文献   

12.
Weier , T. E., and C. R. Stocking . (U. California, Davis.) The cup plastid of Nicotiana rustica. Amer. Jour. Bot. 49(1): 24–32. Illus. 1962.—In situ and isolated chloroplasts of Nicotiana rustica have been studied by light and electron microscopy. Under certain conditions, notably of low light intensity, the starch-free plastid forms a cup. In isolated plastids the form may be modified by the tonicity of the isolation medium. In situ, the cup always faces the cell wall. Electron micrographs show the cup to be formed of compartmented grana connected at irregular intervals by flexuous channels known as frets. The interior of the cup is filled with a finely granular stroma which also forms the material surrounding the grana and the frets in the body of the cup. The grana radiate outward from the central stroma. They may be considered as cylinders. They are fairly rigid, as curvatures to form the cup-shape occur only in the interconnecting fretwork. The compartments may have a limited movement with reference to their axis. These evidences of movement of the part of the ultramicro plastid structures thought to contain chlorophyll suggest that the movement may be related to changes in light intensity or other factors influencing the rate of photosynthesis.  相似文献   

13.
Ravi Danielsson 《BBA》2004,1608(1):53-61
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700+ and YD, respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIβ) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIα) 300, PSI (PSIβ) in stroma lamellae 214, PSII in grana core (PSIIα) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

14.
Ecological niches are the result of ecosystem element (compartment) interaction under the influence of environmental factors. The competence model is devised to map this interaction. It includes the assumption of an overall physiological state of a compartment depending only on intensive environmental factors, expressions for the adaptedness and competence of the compartment in interaction. Consequently, niches are environmental factor domains of superior competence. The situation of niches (niche structure) and competence maxima are extensively studied in the fundamental case of two interacting compartments and in the special case of n concentric compartments. The impact of one immigrating compartment is discussed. All detailed investigations made involve only one intensive environmental factor and the special assumption of similar physiological state functions of all compartments.  相似文献   

15.
Electron paramagnetic resonance (EPR) was used to quantify Photosystem I (PSI) and PSII in vesicles originating from a series of well-defined but different domains of the thylakoid membrane in spinach prepared by non-detergent techniques. Thylakoids from spinach were fragmented by sonication and separated by aqueous polymer two-phase partitioning into vesicles originating from grana and stroma lamellae. The grana vesicles were further sonicated and separated into two vesicle preparations originating from the grana margins and the appressed domains of grana (the grana core), respectively. PSI and PSII were determined in the same samples from the maximal size of the EPR signal from P700(+) and Y(D)( .-), respectively. The following PSI/PSII ratios were found: thylakoids, 1.13; grana vesicles, 0.43; grana core, 0.25; grana margins, 1.28; stroma lamellae 3.10. In a sub-fraction of the stroma lamellae, denoted Y-100, PSI was highly enriched and the PSI/PSII ratio was 13. The antenna size of the respective photosystems was calculated from the experimental data and the assumption that a PSII center in the stroma lamellae (PSIIbeta) has an antenna size of 100 Chl. This gave the following results: PSI in grana margins (PSIalpha) 300, PSI (PSIbeta) in stroma lamellae 214, PSII in grana core (PSIIalpha) 280. The results suggest that PSI in grana margins have two additional light-harvesting complex II (LHCII) trimers per reaction center compared to PSI in stroma lamellae, and that PSII in grana has four LHCII trimers per monomer compared to PSII in stroma lamellae. Calculation of the total chlorophyll associated with PSI and PSII, respectively, suggests that more chlorophyll (about 10%) is associated with PSI than with PSII.  相似文献   

16.
In plants, the stacking of part of the photosynthetic thylakoid membrane generates two main subcompartments: the stacked grana core and unstacked stroma lamellae. However, a third distinct domain, the grana margin, has been postulated but its structural and functional identity remains elusive. Here, an optimized thylakoid fragmentation procedure combined with detailed ultrastructural, biochemical, and functional analyses reveals the distinct composition of grana margins. It is enriched with lipids, cytochrome b6f complex, and ATPase while depleted in photosystems and light‐harvesting complexes. A quantitative method is introduced that is based on Blue Native Polyacrylamide Gel Electrophoresis (BN‐PAGE) and dot immunoblotting for quantifying various photosystem II (PSII) assembly forms in different thylakoid subcompartments. The results indicate that the grana margin functions as a degradation and disassembly zone for photodamaged PSII. In contrast, the stacked grana core region contains fully assembled and functional PSII holocomplexes. The stroma lamellae, finally, contain monomeric PSII as well as a significant fraction of dimeric holocomplexes that identify this membrane area as the PSII repair zone. This structural organization and the heterogeneous PSII distribution support the idea that the stacking of thylakoid membranes leads to a division of labor that establishes distinct membrane areas with specific functions.  相似文献   

17.
We used cryoelectron tomography to reveal the arrangements of photosystem II (PSII) and ATP synthase in vitreous sections of intact chloroplasts and plunge-frozen suspensions of isolated thylakoid membranes. We found that stroma and grana thylakoids are connected at the grana margins by staggered lamellar membrane protrusions. The stacking repeat of grana membranes in frozen-hydrated chloroplasts is 15.7 nm, with a 4.5-nm lumenal space and a 3.2-nm distance between the flat stromal surfaces. The chloroplast ATP synthase is confined to minimally curved regions at the grana end membranes and stroma lamellae, where it covers 20% of the surface area. In total, 85% of the ATP synthases are monomers and the remainder form random assemblies of two or more copies. Supercomplexes of PSII and light-harvesting complex II (LHCII) occasionally form ordered arrays in appressed grana thylakoids, whereas this order is lost in destacked membranes. In the ordered arrays, each membrane on either side of the stromal gap contains a two-dimensional crystal of supercomplexes, with the two lattices arranged such that PSII cores, LHCII trimers, and minor LHCs each face a complex of the same kind in the opposite membrane. Grana formation is likely to result from electrostatic interactions between these complexes across the stromal gap.  相似文献   

18.
Ravi Danielsson 《BBA》2009,1787(1):25-442
Membrane vesicles, originating from grana, grana core (appressed grana regions), grana margins and stroma lamellae/end membranes, were analysed by counter current distribution (CCD) using aqueous dextran-polyethylene glycol two-phase systems. Each vesicle population gave rise to distinct peaks in the CCD diagram representing different vesicle subpopulations. The grana vesicles and grana core vesicles each separated into 3 different subpopulations having different chlorophyll a/b ratios and PSI/PSII ratios. Two of the grana core subpopulations had a chlorophyll a/b ratio of 2.0 and PSI/PSII ratio of 0.10 and are among the most PSII enriched thylakoid vesicle preparation obtained so far by a non detergent method. The margin vesicles separated into 3 different populations, with about the same chlorophyll a/b ratios, but different fluorescence emission spectra. The stroma lamellae/end membrane vesicles separated into 4 subpopulations. Plastoglobules, connected to membrane vesicles, were highly enriched in 2 of these subpopulations and it is proposed that these 2 subpopulations originate from stroma lamellae while the 2 others originate from end membranes. Fragmentation and separation analysis shows that the margins of grana constitute a distinct domain of the thylakoid and also allows the estimation of the chlorophyll antenna sizes of PSI and PSII in different thylakoid domains.  相似文献   

19.
The cumulant generating function and first two moments are derived for the stochastic distribution of units in a general irreversiblen-compartment model with time-dependent transition probabilities. In this model, a unit in the first compartment can transfer to any one of the remainingn−1 compartments and a unit in the second compartment can transfer to any of the remainingn−2 compartments and so on. In addition, a unit can enter or leave the system through any compartment. The work is related to previous research and a numerical example is given.  相似文献   

20.
The development of the dimorphic chloroplasts of Zea mays L. in adult foliage leaves is described, and a method of correlating ultrastructural stages by means of leaf chlorophyll is presented. In addition, the developmental changes in chlorophyll a/b ratio are discussed. Both the mesophyll and the bundle sheath plastids contain small grana at the earliest stages of plastid development. As the plastids enlarge, the mesophyll grana stacks increase in both length of the appressed membrane and in the number of thylakoids per granum. Initially, the grana stacks in the bundle sheath plastids also enlarge, but as the plastids approach full size, most of the membrane appression is lost. However, the remaining areas of appression in the bundle sheath plastids show an increase in the number of thylakoids in each small granum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号