首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We asked whether differences in abundance and seed prodtiction of Brachypodium pinnatum after 16 yr of four different experimental land use regimes were reflected in differences in vegetative dispersal distance, clone diversity, clone area, and the proportions of sexual and vegetative recruitment. Mean vegetative dispersal distance was 5.5 mm yr'. Electrophoresis of 5 polymorphic isozyme loci of 20 tillers sampled at defined positions in each of twelve 1 × 6 m sampling areas (3 per treatment) revealed considerable clonal diversity. Per sampling area we found on average 9.98 enzyme phenotypes (clones), mean Simpson index was 0.825. and mean Shannon index 0.801. The mean ratio of sexual vs vegetative recruitment was about 1:32000. Despite this low ratio, clonal diversity within the population of" B. pinnatum was higher than reported for other clonal plant populations, possibly because of its high ramet densities. Moan clone area was 5.73 m2-. i.e. mean clone radius was 1.35 m. None of the 10 pairwise correlations between abundance and seed production on the one hand, and number of clones per plot sample, plot Simpson index, plot Shannon index, ratio of vegetative vs sexual recruitment, and clone area on the other, was significant. Mean clone radius was 245 times larger than the mean distance of yearly vegetative dispersal which suggests old ages and low turnover rates of clones. The time scale of the inert response of clonal diversity of B. pinnatum to changes in land use appears to largely exceed the experimental period of 16 yr.  相似文献   

2.
Singh  Bajrang 《Plant and Soil》1998,203(1):15-26
Three clones of Populus deltoides were raised on the degraded soils of Gangetic alluvium in north India (26°45 N; 80°53E). The soil was compact, sodic and impervious to water associated with nutrient deficiency or toxicity. Clones G3 and G48 produced nearly similar biomass of 49 t ha-1 at 10 yr, whereas, clone D121 did not perform well. All the clones depicted a polynomial growth pattern of net productions during 5–10 yr culminating on 8–9 yr. Clone G48 outscored in net production and its nutrient demand particularly for N was relatively less than other two clones. A high nitrogen requirement of clone G3 was accomplished by adopting a tight cycling through greater retranslocations from the senescising leaf and lesser return by litter fall. Whereas, the process for P and K contents did not vary between the clones G3 and G48. In contrast, a lose cycling of nutrient by clone G48, increased its nutrient use efficiency based on net production per unit of nutrient uptake or requirement except to K and Ca elements. Grass communities contributed significantly in efficient nutrient recycling and soil amelioration. Symptoms of nutrient depletion in the soil have not been yet distinguished during the five years and rather soil was ameliorated to some extent through the elevated levels of total N, exchangeable Ca and Mg contents. A marked reduction of exchangeable Na content in the soil, particularly by G48 clone, would be in favour of plant productivity to next rotation as the Na toxicity in sodic soils limits the plant growth. Clone G3 dominated in nutrient removal from the site during wood extraction. This study infers that clone G48 has a modest potential of cropping at a short rotation of 9 yr, preferably under an agroforestry land use system on such degraded soils.  相似文献   

3.
In living and fossil reefs, rapid upward clone growth provides positive topographic relief; the skeletal framework provides rigidity. Clonal organisms have been the chief frame-builders during most of the Phanerozoic; large clone size, growth habit, growth form, and arrangement of these clones in the framework result from rapid growth rates. Dense skeletal packing enhances rigidity and results in live–live interactions between juxtaposed clones. These interactions are both heterospecific and conspecific; the former mostly involve spatial competition whereas the latter involve clone fusion, self-overgrowth, and fission. We describe three types of fusion: (a) inter-clone fusion of two or more clones, each from a separate propagule; (b) intra-clone fusion of parts of the same clone having its origin from a single propagule; it includes recovery from partial clone degradation and self-overgrowth; (c) quasi-fusion between a live bud/polyp/zooid and a dead part (stem; branch) of the same or a different clone, i.e., a live-dead association.  相似文献   

4.
5.
To better understand the genetic control of growth traits (tree height, dbh, and stem volume) and wood properties (basic wood density and fiber length) in triploid hybrid clones of Populus tomentosa, genetic relationships among selected wood properties with growth traits were examined in 5-year-old clonal field trials located in Yanzhou, Gaotang, and Xiangfen, northern China. In total, 180 trees from 10 clones were sampled from the three sites. The site had a moderate effect on basic wood density (BWD), stem wood dry weight (DWT), and tree growth and had a highly significant effect on fiber length (FL) (P?<?0.001). Clonal effects were also significant (P?<?0.05) for all studied traits (except for diameter at breast height (DBH) and stem volume (SV)). Clone × site interaction was significant for all the studied traits except for FL. The estimated repeatability of clonal means for FL (0.91) was higher than for BWD (0.71), DWT (0.62), tree height (0.62), DBH (0.61), and SV (0.55). Intersite genetic correlation estimates indicated that wood properties were more stable than growth traits. Phenotypic correlation estimates between SV and BWD ranged from ?0.29 to ?0.10.  相似文献   

6.
Aim Population pressure and communal land ownership are often perceived as serious threats to forest conservation in savanna woodlands of central and southern Africa. I aimed at testing the hypothesis that the rate of miombo woodland recovery after clearing and re‐growth structure are determined by land tenure and use. Location Miombo woodland under customary, leasehold, forest reserve and national park on ten permanent and temporary sites was studied in central Zambia. Two sites were in mature woodland and eight sites were in re‐growth miombo ranging in age from 1 to 30 years. Methods I enumerated and measured girth at breast height (1.3 m above ground) of trees/stems in sixty‐four 20 × 10 m plots in 1982, 1986 and 2000 at six sites and annually from 1990 to 2001 at four sites to determine stem density and status (live, dead or cut) and wood biomass. A total of 239 trees were cut, wood biomass measured and the data used to develop equations for estimating wood biomass on study plots. Distance between each study site and the nearest human settlement was estimated during each sampling period using aerial photographs, topographical maps and the global positioning system. Results Land tenure was responsible for significant differences in stem density, wood biomass and rate of biomass accumulation in re‐growth following clearing of mature miombo woodland. Although stem density was highest on customary land, wood biomass and accumulation rate were lowest. The highest biomass was on plots in forest reserves, with intermediate values for leasehold and national park. Fire was responsible for tree mortality at all the study sites and its impact was highest at a site in a national park. Sites close to human settlements had the highest density of cut stems but this activity did not significantly reduce wood biomass. Rate of woodland recovery was higher on sites cleared in the 1970s than on sites cleared in the 1990s, irrespective of age of re‐growth. The development of the first, second and third re‐growths following successive woodland clearing in 1972, 1981 and 1990, respectively, was not significantly different, except for stem density which was highest in the second re‐growth. Analysis of interactions between five land tenure and use factors (independent variables) and re‐growth structure revealed that 52% (P=0.0000) of the variation in stem density was because of re‐growth age and decade in which the woodland was cleared while distance to human settlements and age of re‐growth explained 42% (P=0.0000) of the variation in wood biomass. Individually, distance to human settlements explained 25% (P=0.0000) of the variation in wood biomass accumulation rate. Conclusion The results supported the hypothesis that rate of miombo woodland recovery and structure were influenced by land tenure and use. However, analysis of interactions between factors revealed that use related factors (i.e. decade in which woodland was cleared and distance to human settlements) and re‐growth related factors (age and type of re‐growth) were more important than land tenure per se in explaining variation in miombo recovery. The conclusion from these results is that regulation of land use is more important than change in land tenure to the proper management of miombo woodland.  相似文献   

7.
Reproduction can have a high resource cost. It has been suggested that greater investments in sexual reproduction by female dioecious plants leads to a lower rate of vegetative growth in females than in males. In this study, we investigated sexual dimorphism in biomass allocation and genet growth of the dioecious clonal shrub, northern prickly ash (Xanthoxylum americanum). The allocation of biomass over the course of one growing season to reproductive tissue, leaves, and growth of aboveground first-year wood, was compared in 18 clones growing in fields and six clones in woods in southeastern Wisconsin during 1985 and 1986. In addition, the number of shoots per clone, and weight of nonfirst-year wood (accumulated biomass) above- and below-ground were estimated. In open field sites, male clones allocated more biomass to new wood and less to reproduction than females, although males allocated more to flowers alone. Accordingly, male clones had significantly more shoots and more accumulated biomass both above- and below-ground than female clones. In the woods, where fruit set was near zero, there were few significant differences between male and female clones in either biomass allocation or accumulated biomass. These results support the hypothesis that the high resource investment in fruit production by females reduces their vegetative growth relative to males.  相似文献   

8.
9.
Three different Eucalyptus urophylla clones grown under two different spacing regimes in an experimental site in the state of São Paulo, Brazil, were analyzed to test effects of clone identity, spacing, cambial age and hydroclimatic conditions on high-resolution intra-annual wood density profiles. Since distinct periodic tree-ring boundaries were not visible on the stem cross-sectional surfaces, finding an alternative method for synchronization of density profiles was crucial for the analysis. The challenge was to generate intra- and inter-tree synchronized density profiles that possess high amplitude variation and low phase variation. Thus, we developed a protocol and workflow of how such high-resolution density profiles can be spatially aligned and temporally annotated to enable correlation analyses between trees and with time series of environmental stimuli. Mean wood density was significantly different between clones, but not between the spacings. Wood density increased significantly with increasing cambial age and decreasing growth rate. Principal component analysis showed that the overall variability in the temporally annotated density profiles is dominated by a highly significant common signal. We found significant negative correlation values for precipitation, indicating that water supply is the main driver of stem growth at the site, and providing evidence for the correctness of the method. The developed workflow can easily be adjusted to the analysis of other intra-annual tree-ring features like anatomical xylem cell traits or isotopic signals in the wood. It has a large potential to be used as a general guideline for the synchronization of intra-annual tree-ring traits, especially when distinct tree-ring boundaries are missing, as it is often the case under tropical climatic conditions. The workflow supports the development of spatially aligned and temporally annotated chronologies under non-annual growth rhythms.  相似文献   

10.
Estimations on biomass recovery rates by secondary tropical forests are needed to understand the complex tropical succession, and their importance on CO2 capture, to offset the warming of the planet. We conducted the study in the Porce River Canyon between 550 and 1 700m.a.s.l. covering tropical and premontane moist belts. We established 33 temporary plots of 50m x 20m in secondary forests, including fallows to succesional forests, and ranging between 3 and 36 years old; we measured the diameter at breast height (D) of all woody plants with D > or = 5cm. In each one of these plots we established five 10m x 10m subplots, in which we measured the diameter betweem 1cm < or = D < 5cm of all woody plants. We estimated the biomass of pastures by harvesting 54 plots of 2m x 2m, and of shrubs in the fallows by harvesting the biomass in 18 plots of 5m x 2m. We modeled Bav (above ground live biomass of woody plants) and Brg (coarse root biomass) as a function of succesional age (t) with the growth model of von Bertalanffy, using 247t/ha and 66t/ha as asymptote, respectively. Besides, we modeled the ratios brg/bav = f(D) and Brg/Bav = f(t). The model estimated that 87 years are required to recover the existing Bav of primary forests through secondary succession, and 217 years for the Brg of the primary forest. The maximum instantaneous growth rate of the Bav was 6.95 t/ha/yr at age 10. The maximum average growth rate of the Bav was 6.26 t/ha/yr at age 17. The weighted average of the absolute growth rate of the Bav reached 4.57t/ha/yr and the relative growth rate 10% annually. The ratio brg/bav decreases with increasing D. The ratio Brg/Bav initially increases very rapidly until age 5 (25%), then decreases to reach 25 years (18%) and increases afterwards until the ratio reaches the asymptote (26.7%).  相似文献   

11.
Variations in growth, above- and below-ground biomass and nutrient distribution were examined in five clones (G3, G48, 65/27, D121 and S7C1) of Populus deltoides grown under agrisilviculture system in sub-humid tropics of Central India. The monoclonal blocks were planted at 4x5 m in a randomized block design with three replications. Diameter at breast height (dbh) and tree height were consistently higher in clone 65/27 and lowest in clone S7C1. Mean annual increments (MAI) in dbh and height were 1.6 and 1.3 times higher in clone 65/27 compared to clone S7C1. Total biomass varied from 48.5 to 62.2 Mg ha(-1) in six-year-old clones. In rank order, the total biomass of clones was: 65/27>D121>G48>G3>S7C1. Stem wood accounted 60.4-68.9% to total biomass followed by coarse roots (12.2-18.9%), branches (12.3-15%), leaves (3.02-6.9%) and fine roots (1.5-2.7%). Root-shoot ratio ranged from 0.2 to 0.35. It was highest in clone G48 and lowest in clone S7C1. In six-year-old clones, total N ranged from 184.3 to 266.3 kg ha(-1), P from 16.8 to 31.1 kg ha(-1) and K from 81.9 to 128.7 kg ha(-1). Total N and P were highest in clone 65/27, while K in clone G48. Nutrients were lowest in clone S7C1. In general, maximum nutrients (N, P and K) were allocated to above-ground components (leaves>stem>branches) than below-ground components. Available N, P and K in the soil improved significantly after six years of planting. It was higher in 0-20 cm and decreased with soil depth. At 0-20 cm soil depth, N increased from 14.9% to 24.1%, P from 17.2% to 23.3% and K from 3.1% to 5.1% under different clones. The yield of both soybean and wheat reduced under poplar clones. Yield losses in soybean ranged from 10.1% to 33% and wheat from 15% to 30.3% under different clones. The management strategies for reducing tree-crop competition and nutrient export from the site under P. deltoides based agrisilviculture system for achieving sustainable production are discussed.  相似文献   

12.
Effects of elevated carbon dioxide (CO2) and ozone (O3) on wood properties of two initially 7‐year‐old silver birch (Betula pendula Roth) clones were studied after a fumigation during three growing seasons. Forty trees, representing two fast‐growing clones (4 and 80), were exposed in open‐top chambers to the following treatments: outside control, chamber control, 2 × ambient [CO2], 2 × ambient [O3] and 2 × ambient [CO2]+2 × ambient [O3]. After the 3‐year exposure, the trees were felled and wood properties were analyzed. The treatments affected both stem wood structure and chemistry. Elevated [CO2] increased annual ring width, and concentrations of extractives and starch, and decreased concentrations of cellulose and gravimetric lignin. Elevated O3 decreased vessel percentage and increased cell wall percentage in clone 80. In vessel percentage, elevated CO2 ameliorated the O3‐induced decrease. In clone 4, elevated O3 decreased nitrogen concentration of wood. The two clones had different wood properties. In clone 4, the concentrations of extractives, starch, soluble sugars and nitrogen were greater than in clone 80, while in clone 80 the concentrations of cellulose and acid‐soluble lignin were higher. Clone 4 also had slightly longer fibres, greater vessel lumen diameter and vessel percentage than clone 80, while in clone 80 cell wall percentage was greater. Our results show that wood properties of young silver birch trees were altered under elevated CO2 in both clones, whereas the effects of O3 depended on clone.  相似文献   

13.
Several widespread changes in the ecology of old-growth tropical forests have recently been documented for the late twentieth century, in particular an increase in stem turnover (pan-tropical), and an increase in above-ground biomass (neotropical). Whether these changes are synchronous and whether changes in growth are also occurring is not known. We analysed stand-level changes within 50 long-term monitoring plots from across South America spanning 1971-2002. We show that: (i) basal area (BA: sum of the cross-sectional areas of all trees in a plot) increased significantly over time (by 0.10 +/- 0.04 m2 ha(-1) yr(-1), mean +/- 95% CI); as did both (ii) stand-level BA growth rates (sum of the increments of BA of surviving trees and BA of new trees that recruited into a plot); and (iii) stand-level BA mortality rates (sum of the cross-sectional areas of all trees that died in a plot). Similar patterns were observed on a per-stem basis: (i) stem density (number of stems per hectare; 1 hectare is 10(4) m2) increased significantly over time (0.94 +/- 0.63 stems ha(-1) yr(-1)); as did both (ii) stem recruitment rates; and (iii) stem mortality rates. In relative terms, the pools of BA and stem density increased by 0.38 +/- 0.15% and 0.18 +/- 0.12% yr(-1), respectively. The fluxes into and out of these pools-stand-level BA growth, stand-level BA mortality, stem recruitment and stem mortality rates-increased, in relative terms, by an order of magnitude more. The gain terms (BA growth, stem recruitment) consistently exceeded the loss terms (BA loss, stem mortality) throughout the period, suggesting that whatever process is driving these changes was already acting before the plot network was established. Large long-term increases in stand-level BA growth and simultaneous increases in stand BA and stem density imply a continent-wide increase in resource availability which is increasing net primary productivity and altering forest dynamics. Continent-wide changes in incoming solar radiation, and increases in atmospheric concentrations of CO2 and air temperatures may have increased resource supply over recent decades, thus causing accelerated growth and increased dynamism across the world's largest tract of tropical forest.  相似文献   

14.
A long-term free air ozone fumigation experiment was conducted to study changes in physiological ozone responses during tree ontogeny and exposure time in ozone sensitive and tolerant clones of European white birch (Betula pendula Roth), originated from south and central Finland. The trees were grown in soil in natural microclimatic conditions under ambient ozone (control) and 1.4-1.7 x ambient (elevated) ozone from May 1996 to October 2001, and were measured for stem and foliage growth, net photosynthesis, stomatal conductance, stomatal density, visible injuries, foliar starch content and bud formation. After 6 years of exposure, the magnitude of ozone-induced growth reductions in the sensitive clone was 12-48% (significant difference), levels similar or greater than those reported earlier for 2- and 3-year-old saplings undergoing shorter exposures. In the tolerant clone, growth of these larger trees was reduced by 1-38% (significant difference in stem volume), although the saplings had previously been unaffected. In both clones, ozone stress led to significantly reduced leaf-level net photosynthesis but significantly increased stomatal conductance rates during the late summer, resulting in a lower carbon gain for bud formation and the onset of visible foliar injuries. Increasing ozone sensitivity with duration of exposure was explained by a change in growth form (relatively reduced foliage mass), a lower photosynthesis to stomatal conductance ratio during the late summer, and deleterious carry-over effects arising from the reduced number of over-wintering buds.  相似文献   

15.
During cellular senescence, non-clonal cultures of bovine adrenocortical cells show a continuous decline in the rate of production of cyclic AMP (cAMP) stimulated by adrenocorticotropin (ACTH), without changes in the rate of forskolin- or prostaglandin E1-stimulated cAMP production. We investigated the possible mechanisms for loss of response to ACTH by examining the properties of clones of bovine adrenocortical cells. ACTH-stimulated cAMP production rates were measured in clones immediately after isolation, during long-term growth following isolation, and after subcloning. ACTH-stimulated rates were compared with cAMP production in response to forskolin, which acts directly on the catalytic subunit of adenylate cyclase. The results show that cloning is not necessarily associated with a loss of response to ACTH, but that clones with high ACTH response can give rise to subclones with low response. Clones of adrenocortical cells, at the same approximate population doubling level (PDL), showed ACTH response levels that ranged from 12 to 135 pmol cAMP/10(6) cells/min, whereas mass cultures at this PDL showed approximately 50 pmol/10(6) cells/min. Forskolin-stimulated cAMP production rates in clones varied only over the range of 59-119 pmol/10(6) cells/min and showed no correlation with the ACTH-stimulated rates. All clones were adrenocortical cells, as shown by mitogenic response to angiotensin II and cAMP-inducible 17 alpha-hydroxylase activity. The replicative potential of clones varied widely, and there was no apparent correlation between ACTH response levels and growth potential. The level of ACTH response in each clone was stable during proliferation through at least 25 PD beyond the stage at which the clone was isolated. When clones were subcloned, a clone with a high ACTH response level produced sister subclones that had ACTH response levels ranging from 3% of that of the parent clone to a level slightly greater than that of the parent clone. The growth potential of sister subclones varied widely, as for the parent clones, and there was no obvious correlation between growth potential and ACTH response. Two subclones were cloned; in sub-subclones, levels of ACTH response were again different from each other and also from the parent subclone; in one case, the level of ACTH response was approximately eight-fold higher than that of the parent subclone. These experiments show that clonal variation in the extent of expression of a differentiated property may occur in a normal differentiated cell in culture. The loss of ACTH response and the loss of proliferative potential appear to be independent stochastic events.  相似文献   

16.
Various nitrogen sources were shown to alter the growth and modify nitrate reductase activities of stem callus tissue derived from two clones of Convolvulus arvensis L. (field bindweed). Callus from a Washington (S) clone grew better and had a higher level of nitrate reductase activity than callus from a New Mexico (R) clone when nitrate was the only source of nitrogen available in the culture medium. The addition of glycine to the culture medium decreased growth of the R clone and increased growth of the S clone, but glutamic acid repressed growth of both clones. An amide source of nitrogen such as glutamine or asparagine, or ammonium was required to produce maximum growth of both bindweed clones. Glutamine increased nitrate reductase activity in the two clones, and glycine increased nitrate reductase activity in the S clone but decreased it in the R clone. Glutamic acid decreased nitrate reductase activities in both the R and S tissues.  相似文献   

17.
Carex curvula is a very slow-growing rhizomatous sedge that forms extensive stands in the European an alpine belt. The recruitment of sexual progeny is extremely rare and propagation occurs predominantly through clonal growth. The randomly amplified polymorphic DNA (RAPD) technique was used to analyse clonal structure in a small patch (2.0x0.4 m sampling transect plus some additional samples) of a high-alpine population of the species. Amplification of the DNA of 116 tiller samples from the patch with eight ten-base primers yielded a total of 95 bands, of which 73 were polymorphic. Based on the RAPD amplification profiles a total of 15 multilocus genotypes (putative clones) were identified. Due to the high number of polymorphic loci the number of genetic markers delineating individual clones was high (range: 16–39 markers) which suggests that our estimates of clonal diversity are precise. More than half of the sampled tillers were identified as belonging to a single clone which formed a relatively homogeneous disc intermingling with other clones only at its margin. Based on the maximum diameter of this large clone of more than 7000 tillers and estimates of annual expansion growth of rhizomes (0.4 mm year-1), the age of the clone was calculated to be around 2000 years. This demonstrates that clones of C. curvula may persist on a single spot over long periods with quite diverse alpine climates ranging from rather mild periods in the Middle Ages to cool periods during the so called little ice age in the last century. Our results suggest caution with plant migration scenarios based on shifting isotherms where late-successional clonal species, which dominate the alpine vegetation all over the world, are concerned.  相似文献   

18.
Increasing biomass in Amazonian forest plots   总被引:6,自引:0,他引:6  
A previous study by Phillips et al. of changes in the biomass of permanent sample plots in Amazonian forests was used to infer the presence of a regional carbon sink. However, these results generated a vigorous debate about sampling and methodological issues. Therefore we present a new analysis of biomass change in old-growth Amazonian forest plots using updated inventory data. We find that across 59 sites, the above-ground dry biomass in trees that are more than 10 cm in diameter (AGB) has increased since plot establishment by 1.22 +/- 0.43 Mg per hectare per year (ha(-1) yr(-1), where 1 ha = 10(4) m2), or 0.98 +/- 0.38 Mg ha(-1) yr(-1) if individual plot values are weighted by the number of hectare years of monitoring. This significant increase is neither confounded by spatial or temporal variation in wood specific gravity, nor dependent on the allometric equation used to estimate AGB. The conclusion is also robust to uncertainty about diameter measurements for problematic trees: for 34 plots in western Amazon forests a significant increase in AGB is found even with a conservative assumption of zero growth for all trees where diameter measurements were made using optical methods and/or growth rates needed to be estimated following fieldwork. Overall, our results suggest a slightly greater rate of net stand-level change than was reported by Phillips et al. Considering the spatial and temporal scale of sampling and associated studies showing increases in forest growth and stem turnover, the results presented here suggest that the total biomass of these plots has on average increased and that there has been a regional-scale carbon sink in old-growth Amazonian forests during the previous two decades.  相似文献   

19.
Summary A field test was established in 1987 to evaluate the growth of micropropagated black cherry plantlets and control seedlings. The study also evaluated effects of two container types on initial survival and growth and of pruning on stem form and growth. At the time of field establishment, plantlets had more extensive root systems than the control seedlings. Survival and height growth were not influenced by container size. Through the first three growing seasons, seedlings were larger than micropropagated plants, but growth differences diminished in the fourth through sixth seasons. Pruning increased the length of clear stem by nearly five-fold but adversely affected diameter growth. Although all clones were from ortet trees more than 50 yr old, none showed plagiotropic growth. Six-year results showed that in a well-prepared and maintained plantation, black cherry trees derived from tissue culture can have at least 80% survival, and growth rates in excess of 1 m per year.  相似文献   

20.
Abstract Water use, drought response and growth were examined under controlled conditions in four interbreeding willow species from different geographical origins (two clones of Salix viminalis L., one clone of S. viminalis × S. schwerenii E. Wolf and one clone of S. purpurea L.). The levels of soil water depletion that plants could sustain without wilting varied markedly between the clones. The level of drought resistance expressed this way was positively related to resistance to xylem cavitation, negatively related to the maximum stomatal conductance, and positively related to early stomatal closure. The rate of stomatal closure, however, was negatively related to the resistance to xylem cavitation. Prior to drought, there were no significant differences between leaf-specific hydraulic conductances of the clones when whole plants were considered. However, there were differences if the roots and shoots were considered separately. Drought resistance was negatively related to maximum growth yields. This is probably because resources were diverted away from leaf production to the production of denser wood (wood density was positively related to cavitation resistance), and, for one clone, to the growth of a larger root system. In addition, because the level of drought resistance was negatively related to the maximum stomatal conductance, growth may have been adversely affected as a result of reduced photosynthesis. Given its high water extraction ability, one of the clones started to wilt sooner than expected, although only lateral shoots were affected. This appeared to indicate a strategy of sacrificing expendable shoots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号