首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MARTIN  F. W. 《Annals of botany》1970,34(4):835-842
Stigmatic exudates were removed from maize silks during 6-secand 10-min extraction periods by methanol-HCI, acetone, andethyl ether. Crude extracts were fractionated by differentialsolubility and chromatography. Methanol-HCI extracted anthocyaninsand phenolic compounds (chiefly glycosides and esters of hydroxy-cinnamicacids). Acetone extracted phenolic compounds. Ether extractedesters of fatty acids and lipophilic phenolic compounds. Thelipid compounds probably regulate availability of water to thepollen, and prevent desiccation of the stigma. The phenoliccompounds could serve as sources of nutrients to germinatingpollen, or could stimulate or inhibit pollen germination.  相似文献   

2.
Compounds that promoted the growth of pollen tubes were isolated from the style of Rhododendron mucronatum and were identified as azalein, (+)-catechin, and (?)epicatechin. Among these compounds, 50–100 ppm of (+)-catechin or (?)-epicatechin increased the growth of pollen tubes in Camelliajaponica, R. mucronatum, Styrax japonica, and Pinus densijlora by 16–20%. These compounds had no significant effects on the growth of pollen tubes in Lilium auratum and Narcissus pseudo-narcissus. Among the phenolic compounds with similar chemical structures as the promoters, catechol-and pyrogallol-type compounds had the activity and the latter types were more effective. As α-tocopherol also showed growth promoting activity, it was thought that the antioxidative activity of the phenolic compounds was responsible for the promotion of the pollen tube growth.  相似文献   

3.
花药药隔的特化结构通常具有重要的生物学意义。目前,有关药隔特化出贮存酚类物质的异细胞群的研究报道甚少,该特化结构有何生物学意义则未见报道。本研究运用半薄切片技术、冰冻切片技术、组织化学和细胞化学等方法对忍冬属Lonicera植物特化药隔异细胞群的主要内含物进行定性分析,实验证明忍冬属特化药隔异细胞群内含丰富的酚类物质。另外通过对忍冬属华南忍冬L.confusa药隔薄壁组织的发育及其与药隔维管束的关系分析,推测忍冬属特化药隔可能一方面对发育中的花药维管束起保护作用,另一方面又可作为酚类物质的临时贮存场所。同时研究发现忍冬属植物特化药隔异细胞群的形成及其分布特点可能具有重要的系统学意义。  相似文献   

4.
《Biomass》1988,15(3):155-164
The presence and inhibitory activity of phenolic compounds in sorghum biomass were determined. Sorghum contains phenolic compounds at all stages of growth, with higher levels in leaves and glumes compared to stalks and caryopses. The phenolic compounds inhibited alpha- and gluco-amylase activity. Storage of sorghum resulted in increased levels of some phenolic acids. Levels of free phenolic compounds in ensiled sorghum leachate were sufficient to inhibit the hydrolysis of carbohydrates. The phenolic compounds from sorghum appeared to be detoxified during anaerobic digestion.  相似文献   

5.
Mature pollen is covered by durable cell walls, principally composed of sporopollenin, an evolutionary conserved, highly resilient, but not fully characterized, biopolymer of aliphatic and aromatic components. Here, we report that ABORTED MICROSPORES (AMS) acts as a master regulator coordinating pollen wall development and sporopollenin biosynthesis in Arabidopsis thaliana. Genome-wide coexpression analysis revealed 98 candidate genes with specific expression in the anther and 70 that showed reduced expression in ams. Among these 70 members, we showed that AMS can directly regulate 23 genes implicated in callose dissociation, fatty acids elongation, formation of phenolic compounds, and lipidic transport putatively involved in sporopollenin precursor synthesis. Consistently, ams mutants showed defective microspore release, a lack of sporopollenin deposition, and a dramatic reduction in total phenolic compounds and cutin monomers. The functional importance of the AMS pathway was further demonstrated by the observation of impaired pollen wall architecture in plant lines with reduced expression of several AMS targets: the abundant pollen coat protein extracellular lipases (EXL5 and EXL6), and CYP98A8 and CYP98A9, which are enzymes required for the production of phenolic precursors. These findings demonstrate the central role of AMS in coordinating sporopollenin biosynthesis and the secretion of materials for pollen wall patterning.  相似文献   

6.
Summary The majority of pistil peroxidases are involved in processes related to growth, development and senescence. Only the tissue specific peroxidases in the transmitting tissue of the style may play a direct role in the regulation of pollen tube growth. The pollen peroxidases may function mainly in growth regulation and tube wall formation and play a role in the interaction between pollen and pistil by metabolizing the phenolic compounds in the pistil.  相似文献   

7.
Ten phenolic compounds were examined for their effect on mung bean (Phaseolus aureus L.) hypocotyl growth and on respiration and coupling parameters of isolated mung bean hypocotyl mitochondria. Three compounds—tannic, gentisic, and p-coumaric acids—inhibited hypocotyl growth and when incubated with isolated hypocotyl mitochondria released respiratory control, inhibited respiration, and prevented substrate-supported Ca2+ and PO4 transport. Vanillic acid also inhibited hypocotyl growth and reduced mitochondrial Ca2+ uptake but did not affect respiration or respiratory control of isolated mitochondria. This is the first compound reported to selectively inhibit Ca2+ uptake in plant mitochondria. Two other phenolic compounds—α, 3,5-resorcylic and protocatechuic acids—showed no significant effect on hypocotyl growth and did not affect mitochondrial oxidative phosphorylation either separately or in various combinations. Four phenolic compounds—ferulic, caffeic, p-hydroxybenzoic, and syringic acids—showed a significant reduction in mung bean hypocotyl growth but did not inhibit any of the mitochondrial processes examined. The results show that phenolic compounds which alter respiration or coupling responses in isolated mitochondria also inhibit hypocotyl growth and may reflect a mechanism of action for these natural growth inhibitors.  相似文献   

8.
Abstract

Polyphenols are important secondary products of plants with the potential to inhibit carbonic anhydrases. The aim of this study was to investigate the inhibition effects of various phenolic standards, honey, propolis, and pollen species on human carbonic anhydrase I and II. The inhibition values (IC50) of the phenolics (gallic acid, protocatechuic acid, quercetin, catechin, tannic acid, and chrysin) ranged from 0.009 to 0.32?μg/mL, tannic acid emerging as the best inhibitor. The inhibition values of three different types of honey, heather, rhododendron, and chestnut ranged between 2.32 and 25.10?μg/mL, the chestnut honeys exhibiting the best inhibition. The ethanolic extracts of pollen and propolis exhibited good inhibitory properties, with IC50 values between 0.486 and 3.320?μg/mL. In order to evaluate the phenolic composition of bee products, phenolic profiles and total phenolic contents (TFC) were also measured. The inhibition ranking among the natural products studied was phenolic standards?>?propolis?>?pollen?>?honeys, and inhibition was related to TFC.  相似文献   

9.
The effect of anther-derived substances on pollen function was studied using pollen produced by in vitro culture of immature pollen of tobacco (Nicotiana tabacum L.) and petunia (Petunia hybrida). Addition of conditioned medium consisting of diffusates from in situ matured pollen strongly increased pollen germination frequency and pollen tube growth, as well as seed set after in situ pollination. Thin-layer chromatography and depletion of phenolic substances by Dowex treatment indicated that flavonols are present in the diffusate and may be the active compounds. When added to the germination medium, flavonols (quercetin, kaempferol, myricetin) but not other flavonoids strongly promoted pollen germination frequency and pollen tube growth in vitro. The best results were obtained at very low concentrations of the flavonols (0.15-1.5 μm), indicating a signaling function. The same compounds were also effective when added during pollen development in vitro.  相似文献   

10.
Changes in the composition of ionogenic groups of the polymeric matrix of the cell walls of lily (Lilium longiflorum Thunb.) pollen grains were studied during its activation at the early stages of pollen germination. In the cell walls isolated from nonactivated and activated pollen grains, four types of ionogenic groups were identified: amino groups, carboxylic groups of uronic acids, phenolic OH-groups. and groups with pKa 7–8. During the early stages of germination, ionization constants of each type groups remained unchanged, but the quantitative composition of ionogenic groups in the intine changed. In this matrix, a decrease in the content of phenolic groups and demethylated carboxylic groups of uronic acids was detected. It is supposed that, at early stages of germination, the intine loses some part of acid pectins and some phenolic compounds.  相似文献   

11.
Melissopalynological, physicochemical, and volatile analyses of 29 samples of Corsican ‘summer maquis’ honey were performed. The pollen spectrum was characterized by a wide diversity of nectariferous and/or polleniferous taxa. The most important were Anthyllis hermanniae and Rubus sp., associated with some endemic taxa. Castanea sativa was also determined in these honeys with a great variation. The volatile fraction was characterized by 37 compounds and dominated by phenolic aldehydes and linear acids. The major compounds were phenylacetaldehyde, benzaldehyde, and nonanoic acid. Statistical analysis of pollen and volatile data showed that 18 samples were characterized by a high abundance of phenylacetaldehyde, which might relate to the high amount of A. hermanniae and Rubus sp. Eleven other samples displayed a higher proportion of phenolic ketones and linear acids, which characterized the nectar contribution of C. sativa and Thymus herba‐barona, respectively.  相似文献   

12.
The effect of phenolic compounds on hydrothermal oxidation of cellulose was studied using a batch reactor at 300 degrees C with H(2)O(2) as oxidant. Intermediate products, as well as the yields of acetic acid produced in the oxidation of cellulose, phenolic compounds, and cellulose-phenolic compound mixtures were examined. Phenolic compounds used were phenol, 1,4-benzenediol, 2-methoxy-4-methylphenol, and 2,6-di-tert-butyl-4-methylphenol. In the case of oxidation of cellulose-phenolic compound mixtures, (1) formic acid, a basic oxidation product from carbohydrates, decreased considerably, (2) 5-hydroxymethyl-2-furaldehyde and 2-furaldehyde, acid-catalyzed dehydration products from carbohydrates, appeared, and (3) the yield of acetic acid increased compared to that in the oxidation of cellulose. From these results, phenolic compounds seem to inhibit the oxidation of cellulose under hydrothermal conditions. The inhibition of the oxidation of cellulose by phenolic compounds seems to be related closer to the stability of phenolic compounds under oxidation conditions rather than the ease to remove phenolic hydrogen on the OH group.  相似文献   

13.
Studies on pollen phenolic compounds and isozyme profiles of twelve species of Ipomoea to trace the linkage and homology between the species, through UPGMA method, revealed two broad clusters or groups. The trend of clustering and species composition of each group for both the parameters were close to each other and almost in accordance with phylogenetic interpretation with minor variations. The variations are probably due to the fact that phenolics and isozymes are different biomolecules.  相似文献   

14.
Chemical agents that inhibit pollen development: tools for research   总被引:1,自引:0,他引:1  
Summary Several unrelated compounds are known to selectively inhibit the development of the male gametophyte. When applied at suitable dosages to plants at the appropriate stages of anther development, these substances block the formation of fertile pollen. The affected stage of pollen development is characteristic of the specific chemical structure of the compound, ranging from effects on microspore meiosis to the formation of pollen defective in the ability to germinate or fertilize. The range of effects mediated by these substances, and by known male-sterile mutants, indicates that microspore development has several critical phases that are particularly sensitive to fatal inhibition. We propose that chemical inhibitors of pollen development deserve attention as tools for elucidating the regulation of pollen development.  相似文献   

15.
Phenolic compounds have shown to inhibit LDL oxidation in vitro and ex vivo; however, they are hydrosoluble compounds while LDL is a lipoprotein. Analysis of phenolic compounds in LDLs by HPLC is necessary to demonstrate their binding capacity to lipoproteins. We developed and validated a solid phase extraction method (SPE) that allowed us the purification of LDL samples and their analysis by HPLC. This methodology allowed us to demonstrate the in vitro binding capacity of tyrosol, one of the main phenolic compounds in olive oil, to LDL. In the intervention dietary study with volunteers, food rich in phenolic compounds affected LDL composition. Changes in LDL phenolics composition are not observed after the short-term ingestion of food rich in phenolic compounds. However, after one week of olive oil consumption and Mediterranean diet there was an increase in phenolics (p=0.021). An accumulative effect seems necessary to observe significative differences in LDL phenolic composition.  相似文献   

16.
Floral landscapes comprise diverse phytochemical combinations. Individual phytochemicals in floral nectar and pollen can reduce infection in bees and directly inhibit trypanosome parasites. However, gut parasites of generalist pollinators, which consume nectar and pollen from many plant species, are exposed to phytochemical combinations. Interactions between phytochemicals could augment or decrease effects of single compounds on parasites. Using a matrix of 36 phytochemical treatment combinations, we assessed the combined effects of two floral phytochemicals, eugenol and thymol, against four strains of the bumblebee gut trypanosome Crithidia bombi. Eugenol and thymol had synergistic effects against C. bombi growth across seven independent experiments, showing that the phytochemical combination can disproportionately inhibit parasites. The strength of synergistic effects varied across strains and experiments. Thus, the antiparasitic effects of individual compounds will depend on both the presence of other phytochemicals and parasite strain identity. The presence of synergistic phytochemical combinations could augment the antiparasitic activity of individual compounds for pollinators in diverse floral landscapes.  相似文献   

17.
Aims: To investigate the effect of seven wine phenolic compounds and six oenological phenolic extracts on the growth of pathogenic bacteria associated with respiratory diseases (Pseudomonas aeruginosa, Staphylococcus aureus, Moraxella catarrhalis, Enterococcus faecalis, Streptococcus sp Group F, Streptococcus agalactiae and Streptococcus pneumoniae). Methods and Results: Antimicrobial activity was determined using a microdilution method and quantified as IC50. Mor. catarrhalis was the most susceptible specie to phenolic compounds and extracts. Gallic acid and ethyl gallate were the compounds that showed the greatest antimicrobial activity. Regarding phenolic extracts, GSE (grape seed extract) and GSE‐O (oligomeric‐rich fraction from GSE) were the ones that displayed the strongest antimicrobial effects. Conclusions: Results highlight the antimicrobial properties of wine phenolic compounds and oenological extracts against potential respiratory pathogens. The antimicrobial activity of wine phenolic compounds was influenced by the type of phenolic compounds. Gram‐negative bacteria were more susceptible than Gram‐positive bacteria to the action of phenolic compounds and extracts; however, the effect was species‐dependent. Significance and Impact of Study: The ability to inhibit the growth of respiratory pathogenic bacteria as shown by several wine phenolic compounds and oenological extracts warrants further investigations to explore the use of grape and wine preparations in oral hygiene.  相似文献   

18.
Crops e. g., pecan, persimmon and passionflower, which show resistance to the fungus Dematophora necatrix, the causal agent of white root rot disease, contain phenolic compounds which inhibit its growth. Roots of resistant crops contain higher concentrations of phenolic compounds than those of suceptible crops, e. g., apple, almond and peach. The fungus contains active polyphenoloxidase (PPO). The oxidation of phenols to quinones may decrease the inhibitory effect. Catechol, methylcatechol, hydroquinone and 8-hydroxyquinoline significantly inhibited the growth of the fungus. In greenhouse experiments, seedlings were irrigated with, or dipped in, phenols. Catechol, methylcatechol and hydroquinone delayed the appearance of disease symptoms.  相似文献   

19.
The antioxidative stress-response system is essential to fungi for tolerating exposure to phenolic compounds. We show how this system can be targeted to improve fungal control by using compounds that inhibit the fungal mitochondrial respiratory chain. Targeting mitochondrial superoxide dismutase with selected phenolic acid derivatives (e.g., vanillyl acetone) resulted in a 100- to 1,000-fold greater sensitivity to strobilurin or carboxin fungicides. This synergism is significantly greater with strobilurin than with carboxin, suggesting that complex III of the mitochondrial respiratory chain is a better target than complex II for fungal control, using phenolics. These results show certain natural compounds are effective synergists to commercial fungicides and can be used for improving control of food-contaminating pathogens. These results suggest that the use of such compounds for fungal control can reduce environmental and health risks associated with commercial fungicides, lower cost for control, and the probability for development of resistance.  相似文献   

20.
The influence of aromatic phenolic and non-phenolic acids on manganese peroxidase (MnP)-dependent peroxidation of linoleic acid, and oxidation of a non-phenolic lignin model compound (LMC) was studied. Phenolic compounds inhibited both the MnP-dependent lipid peroxidation (LPO) and non-phenolic LMC degradation in the system. The antioxidant activity of the aromatic compounds in the enzymatic system with MnP-dependent LPO depends on the presence of the phenolic hydroxyl groups attached to the aromatic ring structure, the methoxylation of the hydroxyl group in the ortho position in diphenolics, and number of carbon atoms in the side chain. Natural phenolic compounds inhibit the oxidation of non-phenolic lignin in the system based on MnP-mediated LPO, but do not prevent it. This result indicates that MnP-mediated LPO may play an important role in lignin degradation even in the presence of the phenolic antioxidant compounds, and supports the possibility of the involvement of LPO in the degradation of lignin in wood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号