首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphology and meiosis are described in four progeny plants resulting from tetraploid Grindelia camporum Greene (2n = 24) from California pollinated by diploid G. grandiflora Hook. (2n = 12) from Coahuila, Mexico. Three of the four progeny were tetraploid, morphologically like the pistillate parent, and had metaphase I chromosome configurations which included quadrivalents and a complementary number of bivalents. They are considered to have resulted from selfing. The fourth plant was triploid (2n = 18) andmorphologically intermediate between the parents. Chromosome configurations in the triploid were variable with univalents, ring and rod bivalents, trivalents and pentavalents. These two species are considered related through an ancestor with a basic genome, but are separated cytologically by polyploidy and by two distinct chromosomal interchanges that explain the configurations observed in the triploid hybrid.  相似文献   

2.
The chromosome numbers of seven species ofPelargonium sect.Eumorpha have been determined from material of known wild origin, and karyotypic comparisons have been made. Within the section there is variation in basic chromosome number (x = 4, 8, 9, 11), variation in chromosome size, and two species have polyploid races. The three species with chromosome numbers based on x = 11 have the smallest chromosomes (1.0–1.5 µm); chromosomes are larger (1.0–3.0 µm) in the other species.P. elongatum has the lowest chromosome number in the genus (2n = 8).P. alchemilloides is exceptional in that it has four cytotypes, 2n = 16, 18, 34 and 36, and the form with 2n = 36 has large chromosomes (2.0–5.0 µm). Evidence from a synthesized hybrid suggests thatP. alchemilloides with 2n = 16 may be of polyploid origin. The three species based on x = 11 appear to be more closely related to species from other sections ofPelargonium that have the same basic chromosome number and small chromosome size, rather than to other species of sect.Eumorpha.  相似文献   

3.
Two South African Pyrgomorpha species have reduced chromosome numbers, due to centric fusions between the largest autosomes and the medium and small autosomes. P. rugosa has 2n=11(XO) (4 pairs of submetacentric and 1 pair of acrocentric autosomes) and P. granulata has 2n=13(XO) (3 pairs of submetacentric and 3 pairs of acrocentric autosomes). A third South African species has a typical Pyrgomorphidae number of 2n=19(XO) (acrocentrics). The mean chiasma frequency of the 2n=19 species is higher than that of the other two, although the frequencies of distal chiasmata in all three are similar. The recombination potential of the two species with lower chromosome numbers has been reduced, due to fewer crossovers in comparison to the 2n=19 species, as well as to independent assortment.  相似文献   

4.
The two chromosome numbers recorded for Hymenoxys texana, 2n = 16 and 2n = 6, appear to represent dysploid reductions from the base number, x = 15, for the genus.  相似文献   

5.
为了解扇脉杓兰(Cypripedium japonicum Thunb.)和无距虾脊兰(Calanthe tsoongiana T. Tang et F. T. Wang)的核型,采用根尖压片法对扇脉杓兰和无距虾脊兰的染色体数目和核型进行了研究。结果表明,扇脉杓兰体细胞的染色体数为22,核型公式为2n=2x=22=16m+2sm+2st+2t,染色体相对长度组成为2n=22=2L+6M2+12M1+2S,核不对称系数为60.01%,核型分类为2B型;而无距虾脊兰体细胞的染色体数为40,核型公式为2n=2x=40=28m+10sm+2st,染色体相对长度组成为2n=40=8L+10M2+16M1+6S,核不对称系数为59.84%,核型分类为2B型;两者核型都较为对称。其中,无距虾脊兰的核型为首次报道。这为扇脉杓兰和无距虾脊兰的进化地位和种质保护提供了细胞学证据。  相似文献   

6.
New chromosome numbers for two species from the Senecio nemorensis group: S. dacicus (2n = 40) and S. ucranicus (2n = 40) have been ascertained. The counts for S. germanicus Wallr. subsp. germanicus (2n = 40), S. hercynicus Herborg subsp. hercynicus (2n = 40), S. ovatus (P. Gaertn. et al.) Willd. subsp. ovatus (2n = 40) occurring in the Carpathians are also reported. The study confirmed only the known tetraploid chromosome number for the taxa of this group. The pollen fertility ranged from 82.09 to 92.99% in all examined species and subspecies, including their hybrids.  相似文献   

7.
Pollen size statistics are presented for 10 closely related species of Bouteloua and relationships between pollen size and chromosome numbers are presented for 13 populations of 5 species and 3 varieties. With 1 exception, all populations of all taxa conformed to a general pattern of pollen size dependent upon chromosome number. Chromosome numbers varied from 2n = 20 to 2n = ca. 103, with several independent aneuploid series. Statistical analyses were made of pollen size as related to chromosome number in the 3 varieties of B. curtipendula. These data showed that tetraploids (2n = 40) of var. tenuis had significantly greater pollen size and coefficient of variation than diploids (2n = 20) of the same variety. Similarly, aneuploids of var. curtipendula with 2n = 45 to 2n = 64 chromosomes had significantly larger and more variable pollen than tetraploids (2n = 40) of the same variety. Highly significant positive regression coefficients were obtained from analyses of chromosome numbers and mean pollen size, and chromosome numbers and coefficient of variation, for var. curtipendula. Regression coefficients for var. caespitosa populations with chromosome numbers over the hexaploid (2n = 60) level were not significant.  相似文献   

8.
Eighty-three chromosome counts are reported for 72 taxa of the Bromeliaceae. Fifty-eight of these counts are the first known chromosome number reports for their respective taxa. A model of chromosomal evolution in the Bromeliaceae (n = 25) is presented. The model is parsimonious and consistent with existing data on meiotic chromosome numbers within the family and in the closely related Velloziaceae (n = 9). Two hypothesized paleodiploids (n = 8 and n = 9) hybridized to form a tetraploid that in turn hybridized with the n = 8 lineage. The resultant n = 25 is the extant base number for the family. Two alternative hypotheses could explain the unique extant base number (n = 17) for Cryptanthus: 1) Cryptanthus represents the paleotetraploid level, i.e., prior to the second round of hybridization, or 2) the lower number represents the result of a more recent series of aneuploid reductions from n = 25. Given the existence of intergeneric hybrids involving Cryptanthus, aneuploid reduction is the more likely interpretation.  相似文献   

9.
Somatic chromosome number and detailed karyotype analysis were carried out in six Indian Momordica species viz. M. balsamina, M. charantia, M. cochinchinensis, M. dioica, M. sahyadrica and M. cymbalaria (syn. Luffa cymbalaria; a taxon of controversial taxonomic identity). The somatic chromosome number 2n = 22 was reconfirmed in monoecious species (M. balsamina and M. charantia). Out of four dioecious species, the chromosome number was reconfirmed in M. cochinchinensis (2n = 28), M. dioica (2n = 28) and M. subangulata subsp. renigera (2n = 56), while in M. sahyadrica (2n = 28) somatic chromosome number was reported for the first time. A new chromosome number of 2n = 18 was reported in M. cymbalaria against its previous reports of 2n = 16, 22. The karyotype analysis of all the species revealed significant numerical and structural variations of chromosomes. It was possible to distinguish chromosomes of M. cymbalaria from other Momordica species and also between monoecious and dioecious taxa of the genus. Morphology and crossability among the dioecious species was also studied. Evidence from morphology, crossability, pollen viability and chromosome synapsis suggests a segmental allopolyploid origin for M. subangulata subsp. renigera. The taxonomic status of the controversial taxon M. cymbalaria was also discussed using morphological, karyological and crossability data.  相似文献   

10.
Achiridae is an important family of the order Pleuronectiformes widely distributed in North, Central, and South America with freshwater and marine species. In the present study cytogenetic analyses comprising conventional and molecular techniques were carried out in seven species of this family. The following diploid numbers (2n) and fundamental numbers (FN) were obtained: Achirus declivis 2n = 34, FN = 52; Achirus lineatus 2n = 40, FN = 66; Catathyridium jenynsi 2n = 40 and FN = 50; Gymnachirus nudus 2n = 36 and FN = 50; Hypoclinemus mentalis 2n = 38 and FN = 54; Trinectes paulistanus 2n = 42 and FN = 52; and Trinectes sp. 2n = 38 and FN = 54. All species presented a single nucleolar organizer region (NOR) bearing chromosome pair and C-band positive segments mainly distributed at the pericentromeric position. The wide variation observed in chromosome number and FN suggests the occurrence of larger chromosome rearrangements in the family Achiridae if compared with other families of the same order.  相似文献   

11.
Meiotic analyses and pollen viability tests were performed on F, hybrids between diploid guayule (Parthenium argentatum Gray 2n = 36), P. rollinsianum Rzedowski (2n = 36), P. alpinum var. tetraneuris Barneby (2n = 36), and P. alpinum var. alpinum Nutt. (2n = 36). Parthenium chromosomes are small and karyomorphologically similar, and meiotic analysis is difficult because of chromosome clumping. However, cytogenetic studies at metaphase I indicated univalents can be seen in a lateral view of the metaphase plate. Chromosome pairing and the number of univalents varied within and between the interspecific hybrids, with an average univalent number of 1.54 for the P. rollinsianum hybrids, 2.36 for the P. alpinum var. tetraneuris hybrids, and 2.46 for the P. alpinum var. alpinum hybrids. Pollen viability tests for the parental species and the hybrids were conducted by germination of pollen grains on stigmas. The percent of viable pollen recorded for the diploid guayule hybrids with P. rollinsianum, P. alpinum var. tetraneuris, and P. alpinum var. alpinum are 21.94, 13.47, and 11.17, respectively. The degree of chromosome pairing and pollen viability is striking because there are many morphological differences between the parents. The chromosome homology of these species based on their pairing behavior allows for the design of a backcross breeding program that would permit the transfer of the desirable characteristics from these species into diploid guayule.  相似文献   

12.
以2份角堇与4份大花三色堇自交系为试验材料,采用染色体常规压片方法,观察和分析了它们的细胞染色体数目、相对长度、平均臂比等核型指标,以明确两种植物细胞学特点,为分类以及育种提供理论依据。结果表明:(1)2份角堇自交系染色体数目均为2n=2x=26,染色体基数为x=13,染色体核型公式分别为2n=2x=26=8m+12sm+6st、2n=2x=26=4m+16sm+6st,核型不对称系数为67.20%~70.10%,核型分类均属于3B。(2)4份大花三色堇自交系均为四倍体,其中2份(EYO-1-2-1-4、DSRFY-1-1-2)染色体数目为44,核型公式为2n=4x=44=4m+16sm+6st、2n=4x=44=16m+24sm+4st;2份(G10-1-3-1-4、XXL-YB-1-1-1-1)染色体数目为48,核型公式分别为2n=4x=48=8m+20sm+20st、2n=4x=48=4m+36sm+8st,核型不对称系数为66.74%~71.77%,核型分类属于2B、3B。  相似文献   

13.
The cytology of thirteen taxa and two hybrids in the genus Pennisetum indicated the distribution of the taxa among the four basic chromosome numbers 5, 7, 8 and 9. The diploid nature of P. ramosum and P. typhoides and the genomic allotetraploid status of P. purpureum was further confirmed. P. massaicum (2n=32), P. orientale (2n=36) and P. subangustum (2n=36) suggested probable autotetraploid nature and the three hexaploids (2n=54) investigated (P. polystachyon, P. longistylis and P. squamulatum) revealed allohexaploid constitution. The natural triploid, P. ruppellii (2n=27) and pentaploid P. villosum (2n=45) were found to be apomicts and they were allotriploid and allopentaploid respectively. The tetraploid-hexaploid complex of P. pedicellatum showed them to be cytotypes only. The cytogenetical behaviour of the hybrid, P. typhoides x P. purpureum with 2n=21 and the trispecies hybrid (P. typhoides x P. purpureum) x P. squamulatum with 2n=48 brought out the homology within the genomes of x=7 and x=9 and also between the genomes with x=7 and x=9. The significance of the inter- and intragenomic chromosome pairing had been brought out from the interspecific hybrids and the natural allotriploid and allopentaploid species having one genome in the haploid condition.The morphological sections of this genus did not correspond with the cytological groups. A high degree of evolutionary specialization was evident in species of the section Gymnothrix. A complete series of polyploids and high degree of heterogeneity from the morphological point of view was brought out in species with x=9.  相似文献   

14.
Meiosis and mode of reproduction are described in Agropyron ferganense Drob., a perennial forage grass from Central Asia. This species is diploid (2n = 14); it exhibits normal meiosis and reproduces by cross-pollination. Hybrids were produced between A. ferganense and six species with known genome formulas: 1) North American A. spicatum (Pursh) Scribn. & Smith, an SS diploid (2n = 14), 2) Middle Eastern A. libanoticum Hack., an SS diploid (2n = 14), 3) North American A. dasystachyum (Hook.) Scribn., an SSHH tetraploid (2n = 28), 4) Eurasian A. caninum (L.) Beauv., an SSHH tetraploid (2n = 28), 5) North American Sitation hystrix (Nutt.) J. G. Smith, an SSHH tetraploid (2n = 28), and 6) South American Elymus patagonicus Speg., an SSHHHH hexaploid (2n = 42). Almost complete chromosome pairing in the A. ferganense x A. spicatum and A. libanoticum hybrids demonstrated that A. fergenanse is an SS diploid, but it is genetically isolated from the other SS diploids because of high sterility in the F1 hybrids. S-genome diploids form a network of species that extend from the Middle East through Central Asia to western North America. Frequent occurrence of seven univalents and seven bivalents at metaphase I in the triploid hybrids of A. ferganense x A. dasystachyum, A. caninum and S. hystrix was consistent with the proposed genome formulas of SS for A. ferganense, SSHH for the three tetraploid species, and SSH for the hybrids. Chromosome pairing was highly variable in the A. ferganense x E. patagonicus hybrids; however, some cells had almost complete bivalent pairing, an expected observation in an SSHH hybrid from a cross between an SS diploid (A. ferganense) and an SSHHHH hexaploid (E. patagonicus). Various options were considered concerning the appropriate generic classification of the S-genome diploids, which are now commonly placed in Agropyron. The inclusion of these species in the genus Eiytrigia, as advocated by some Soviet taxonomists, appears to be a reasonable decision.  相似文献   

15.
In this survey, chromosome counts of different species belonging to the genus Onosma are summarized and then karyological patterns available including frequency of cytotype occurrence, percentage of taxa with particular basic chromosome number and rate of polyploidy in the genus are evaluated. Quantitative parameters have been used to characterize chromosome number (CN) variation. In order to verify if variation patterns differ between three groups of Onosma, Index of CN Heterogeneity (ICNH) was quantified. In addition, meiotic chromosome numbers of 14 populations belonging to 11 species growing in Iran, namely Onosma araratica (2n = 2x = 16), O. asperrima (2n = 2x = 16), O. bulbotricha (2n = 2x = 18), O. kotschyi (2n = 2x = 16), O. microcarpa (2n = 2x = 16), O. nigricaulis (2n = 2x = 16), O. nervosa (2n = 2x = 16), O. obtusifolia (2n = 2x = 16), O. pachypoda (2n = 2x = 16), O. stenosiphon (2n = 2x = 20) and O. subsericea (2n = 2x = 16), were determined. With the exception of O. microcarpa and O. bulbotricha, all chromosome counts are reported for the first time. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Gametic chromosome numbers are reported for 27 collections representing the four species of the Lobelia tupa complex (Campanulaceae, Lobelioideae) in Chile; all are n = 21. This represents the first report of chromosome numbers for L. bridgesii Hook. & Arn., L. excelsa Bonpl., and L. polyphylla Hook. & Arn., and confirms previous reports of this number in L. tupa L. As the basic chromosome number of Lobelioideae is x = 7, these species are interpreted as hexaploids. Higher polyploids are extremely rare among Lobelioideae; most of those previously reported have been either sporadic individuals or populations within an otherwise diploid or tetraploid species, or occasional species within an otherwise diploid and tetraploid lineage. This is the first report of an entire complex of lobelioid species that is uniformly hexaploid. This suggests that the Chilean endemics are relatively derived within Lobelia, and offers some support for the monophyly of the complex.  相似文献   

17.
The somatic chromosome number of three Japanese species ofIsoetes, I. asiatica, I. japonica andI. sinensis, was determined in 199 individuals from 49 populations. The chromosome number ofI. asiatica was 2n=22, confirming previous reports. However,I. japonica andI. sinensis displayed a diversity in chromosome number. Six cytotypes, 2n=66, 67, 77, 87, 88 and 89, were found inI. japonica; 2n=67, 87, 88 and 89 are new counts in the genusIsoetes. The plants with 2n=66 were the most frequent (72% of total individuals examined) and were distributed throughout Honshu and Shikoku. The plants with 2n=88 occurred in western Honshu and a limited region in northeastern Honshu where the plants with 2n=77 were also found. In contrast, four cytotypes, 2n=44, 65, 66 and 68, were found inI. sinensis. The chromosome numbers ofI. sinensis were reported here for the first time. The plants with 2n=44 occurred only in Kyushu, while the plants with 2n=66 were found throughout a large area of western Japan.  相似文献   

18.
《Journal of bryology》2013,35(2):259-263
Abstract

Chromosome counts are reported from five species of Antarctic hepatics belonging to five genera and four families. The chromosome numbers in the genera Herzogobryum (H. teres n = 9) and Paehyglossa (P. dissitifolia n = 9) are reported for the first time. The first chromosome count from Lophozia excisa, n = 27, is the highest reported from Lophozia. A diploid number, n = 18, is reported for the first time from Barbilophozia hateheri; a second count, n = 9, agrees with earlier reports. The commonest Antarctic liverwort Cephaloziella cf. exili[lora has n = 18 and this agrees with earlier reports for the genus.  相似文献   

19.
The examination of several taxa from various tropical regions of the world, previously classified as Phyllanthus urinaria L., indicates that they do not belong to a single species. On the basis of morphology, cytology, genetics, and biometry, a new classification is presented in which the collective species P. urinaria, or “urinaria complex,” is elevated to the subsection level: Phyllanthus subsection Urinaria. Within the subsection, two subgroups may be recognized on the basis of seed coat ornamentation. Each of these lines is represented by two species which differ from each other in chromosome number: P. embergeri nov. spec. (2n = 100) and P. nozeranii nov. spec. (2n = 50) in the “spiraled” line, P. hookeri Muell. Arg. (2n = 100) and P. urinaria L. (2n = 50) in the “radiated” line. In the latter species, which has undergone diversification, two subspecies may be distinguished: P. urinaria urinaria and P. urinaria nudicarpus subspec. nova.  相似文献   

20.
Two basic chromosome karyotypes were found in the genus Sambucus. Chromosome numbers were observed to be 2n = 38 for S. callicarpa, S. cerulea, S. glauca, S. kamtschatica, S. melanocarpa, S. mexicana, S. miquelli, S. sibirica, and S. sieboldiana and 2n = 36 for S. simpsonii and S. williamsii. Measurements of 18 karyotypes are presented. The major differences between the two basic chromosome karyotypes can be explained as the result of a mis-division of a metacentric chromosome giving rise to two telocentric chromosomes, thus reducing the number of metacentrics from five to four and increasing the chromosome number from 2n = 36 to 2n = 38. Observed chromosome aberrations and aneuploidy may result from unstable telocentric chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号