首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To aid in understanding of the early events in seed development, surface topography observations with the scanning electron microscope can be coupled with new methods of clearing tissues for light microscopy study. These techniques reveal that two to four ovules begin development along the placental ridge as conduplication of the carpel proceeds in Trifolium repens L. A multicellular archesporium may develop giving rise to several sporogenous cells and ultimately to more than one megasporocyte. However, meiosis is completed in only one megasporocyte to give rise to a single linear tetrad of megaspores. The chalazal megaspore functions in megagametogenesis. Megasporogenesis and megagametogenesis progress as ovule ontogeny proceeds. The outer integument develops more rapidly than the inner and contributes to the final form of the campylotropous ovule. The most dramatic change in ovule form occurs as the tetrad develops and the functional spore enlarges and divides mitotically to produce the two-nucleate megagametophyte. It can be demonstrated that this early gametophyte develops faster than it is allowed to expand in the nucellar mass. This may in part explain why there is gametophyte failure and reduced seed set in clovers.  相似文献   

2.
Sporogenesis, gametogenesis, fertilization and embryogenesis of Iris mandshurica Maxim. were observed using the normal paraffin method. The results are as follows: the development of the anther wall following the dicotyledonous type consisting of four layers, the epidermis, the endothecium, one middle layer and the secretory tapetum. Fibrous thickenings develop in the endothecium when the anther is shed. Simultaneous cytokinesis during microsporogenesis results in a tetrahedral tetrad of microspores. Mature pollen grains are two-celled. The ovary is inferior and trilocular with axial placenta. The ovule is anatropous, bitegminous and crassinucellate. The archesporial cell below the nucellar epidermis undergoes periclinal division producing the primary parietal cell and the primary sporogenous cell. The primary parietal cell participates in the nucellar formation; the primary sporogenous cell differentiates directly as the megasporocyte. Successive cytokinesis in the megasporocyte usually produces the linear tetrad, and the chalazal megaspore of the tetrad develops into a Polygonum-type embryo sac. The fertilization mode is porogamy. The pollen tube enters into the embryo sac and discharges two sperm 16?C20?h after pollination. The fertilization is the postmitotic type of syngamy. The first division of the zygote is transversal. Endosperm formation is of the nuclear type. The systematic significance of the embryological characters of I. mandshurica is discussed.  相似文献   

3.
Summary Aspects of megasporogenesis in Arabidopsis thaliana have been investigated using a variety of histochemical techniques to visualize general cell organization, DNA and callose in whole ovules and sections by bright field, fluorescence, differential interference contrast and scanning electron microscopy. The microtubular cytoskeleton has been studied using immunofluorescence localization of tubulin in sections and whole cells. The observations deviate from reports of preceding studies in that the megasporocyte was found to undergo both meiotic divisions followed by simultaneous cytokinesis (i.e. without an intermediate dyad stage) to give a multiplanar tetrad of megaspores. This represents a variation of monosporic development not previously described. Polarized distribution of organelles prior to meiosis ensures that the functional megaspore receives the largest share. Aberrant wall formation is common between degenerating megaspores. Localized callose deposition in the tetrad separates these cells from the active megaspore. Their pattern of degeneration and displacement is extremely flexible within the embryo sac space. The microtubular cytoskeleton is extensive and largely cytoplasmic, as distinct from cortical, throughout megasporogenesis. In the megasporocyte, megaspores and one-nucleate embryo sac, randomly oriented microtubules throughout the cells may serve to maintain cytoplasmic integrity and position organelles. Numerous microtubules (MTs) associate closely with the nucleus and some radiate from it, perhaps functioning in nuclear positioning. During meiosis MTs are restricted to the spindle configurations and later to the phragmoplasts which form between daughter nuclei. The lack of interphase cortical arrays suggests that the role of internal influences on cell shape is small.  相似文献   

4.
蚕豆大孢子发生期间细胞壁胼胝质的观察   总被引:1,自引:0,他引:1  
  相似文献   

5.
Callose in cell walls during megasporogenesis in angiosperms   总被引:12,自引:1,他引:11  
B. Rodkiewicz 《Planta》1970,93(1):39-47
Summary Callose was detected by fluorescence microscopy in megasporogenesis in all investigated species with mono- and bisporic embryo-sac development. Callose occurs first in the meiotic prophase in the chalazal part of the megasporocyte wall and by the first meiotic metaphase the whole cell is enveloped in a callose-containing wall. Later, there is a marked decrease of callose fluorescence, usually at the chalazal end of the megasporocyte. In Oenothera, where the micropylar megaspore is active, decrease of fluorescence takes place at the micropylar pole of the megasporocyte. Callose appears centrifugally in the cell plates forming eventually the walls dividing the megaspores. It disappears from the walls of the megaspores during degeneration and differentiation.  相似文献   

6.
Potassium pyroantimonate was used to localize loosely-bound calcium in young ovules of lettuce (Lactuca sativa L.) during megasporogenesis to investigate the relationship between ionically available calcium and megaspore degeneration. At the megasporocyte (megaspore mother cell) stage, few calcium precipitates were located in the ovule. Following meiosis in the megasporocyte, a linear tetrad of four megaspores is formed, with three of the four megaspores degenerating from the micropylar end inward. Only the chalazal-most megaspore continues to develop, becoming the functional megaspore. A decrease in amount of calcium precipitates in the megaspore, particularly in the nucleus, precedes the breakdown of the micropylar megaspores, which subsequently undergo structural disintegration and loss of recognizable cellular features. A partial recovery of calcium precipitates occurs during later degeneration. The functional megaspore retains a consistently higher concentration of calcium precipitates during development, which is retained in the developing embryo sac. This, to our knowledge, is the first report related to calcium dynamics during megaspore degeneration, and may facilitate future research aimed at elucidating the mechanisms of megasporogenesis.  相似文献   

7.
The development of ovules and embryo sacs in Ostrya virginiana was studied for the first time. Most ovaries had two ovules which were anatropous, unitegmic and crassinucellate. The ovule usually possessed several archesporial ceils which divided periclinally into the upper parietal cell and the lower sporogenous cell. The sporogenous cell functioned directly as megaspore mother cell. The tetrad of megaspores was linear in arrangement, and every megaspore might be functional. One ovule often contained 2- 6 embryo sacs and the embryo sac belongs to Polygonum type. It can be concluded from the present data that all ovules among the genera of the Betulaceae are unitegrnic. There are more groups with the phenomenon of multiple embryo sacs in anemophic plants such as Betulaceae, Casuarinaceae, Graminae, Jnglandaceae, Myricaceae, Simaroubaceae, Ulmaceae, than in entomophilous plants. Multiple embryo sacs also occur among some parasitic plants and saprophytes, e.g. Orobanchaceae, Cassytha in Lauraceae, Cuscuta in Convolvulaceae and Utricularia in Lentibulariaceae. It may be inferred that the characteristic of multiple embryo sacs be an evolutionary adaptation of those plants with lower pollination rate to increase the rate of fertilization. Finally, a comparison of embryological characters among the genera of the Betulaceae shows that the family is of a number of common embryological characters, such as multicellular archesporium, multiple embryo sacs in one ovule, and a long interval between pollination and fertilization. The diversity and systematic significance of several embryological characters among the “higher” hamamelid families are also discussed. It is still hard to explain the phy-logenetic relationships among those families clearly only with.  相似文献   

8.
The switch from the vegetative to the reproductive pathway of development in flowering plants requires the commitment of the subepidermal cells of the ovules and anthers to enter the meiotic pathway. These cells, the hypodermal cells, either directly or indirectly form the archesporial cells that, in turn, differentiate into the megasporocytes and microsporocytes. We have isolated a recessive pleiotropic mutation that we have termed multiple archesporial cells1 (mac1) and located it to the short arm of chromosome 10. Its cytological phenotype suggests that this locus plays an important role in the switch of the hypodermal cells from the vegetative to the meiotic (sporogenous) pathway in maize ovules. During normal ovule development in maize, only a single hypodermal cell develops into an archesporial cell and this differentiates into the single megasporocyte. In mac1 mutant ovules several hypodermal cells develop into archesporial cells, and the resulting megasporocytes undergo a normal meiosis. More than one megaspore survives in the tetrad and more than one embryo sac is formed in each ovule. Ears on mutant plants show partial sterility resulting from abnormalities in megaspore differentiation and embryo sac formation. The sporophytic expression of this gene is therefore also important for normal female gametophyte development.  相似文献   

9.
太白红杉(Iarix chinensis Beissn)雌球花于7月中下旬开始分化,9月上旬至9月中旬形成大孢子母细咆,10月中旬,大孢子母细胞进入休眠期。翌年4月底至5月初解除休眠,大孢子母细胞进行减数分裂,于5月10日左右形成直列四分体,随后珠孔端的3个大孢子退化,合点端的1个大孢子进一步发育,成熟卵细胞于7月初受精;花粉管将内含物释放入卵细胞后在尾部形成浓密物质沉淀;受精后,合子被染色较深的新细胞质所包围,并发现存在多精入卵的现象。合子经过两次连续有丝分裂,产生4个游离核后伴随新细胞质一起移至合点端,接着同时进行一次有丝分裂产生8个核,并分成上下两层后形成细胞壁,但上层细胞顶部不形成细胞壁。原胚发育属于松型。在幼胚阶段,我们发现部分胚珠发育异常,其雌配子体有的变为半透明状,有的则干瘪萎缩。太白红杉具简单多胚和莲座胚。9月中旬,成熟胚形成,成熟胚具5~6枚子叶。太白红杉从雌球花花芽分化到胚胎成熟历时14个月。  相似文献   

10.
Brachypodium distachyon has emerged as a model plant for the improvement of grain crops such as wheat, barley and oats and for understanding basic biological processes to facilitate the development of grasses as superior energy crops. Brachypodium is also the first species of the grass subfamily Pooideae with a sequenced genome. For obtaining a better understanding of the mechanisms controlling male gametophyte development in B. distachyon, here we report the cellular changes during the stages of anther development, with special reference to the development of the anther wall. Brachypodium anthers are tetrasporangiate and follow the typical monocotyledonous-type anther wall formation pattern. Anther differentiation starts with the appearance of archesporial cells, which divide to generate primary parietal and primary sporogenous cells. The primary parietal cells form two secondary parietal layers. Later, the outer secondary parietal layer directly develops into the endothecium and the inner secondary parietal layer forms an outer middle layer and inner tapetum by periclinal division. The anther wall comprises an epidermis, endothecium, middle layer and the secretory-type tapetum. Major documented events of anther development include the degradation of a secretory-type tapetum and middle layer during the course of development and the rapid formation of U-shaped endothecial thickenings in the mature pollen grain stage. The tapetum undergoes degeneration at the tetrad stage and disintegrates completely at the bicellular stage of pollen development. The distribution of insoluble polysaccharides in the anther layers and connective tissue through progressive developmental stages suggests their role in the development of male gametophytes. Until sporogenous cell stage, the amount of insoluble polysaccharides in the anther wall was negligible. However, abundant levels of insoluble polysaccharides were observed during microspore mother cell and tetrad stages and gradually declined during the free microspore and vacuolated microspore stages to undetectable level at the mature stage. Thus, the cellular features in the development of anthers in B. distachyon share similarities with anther and pollen development of other members of Poaceae.  相似文献   

11.
南方红豆杉(Taxus chinensis var.mairei)为第三纪孑遗树种,也是我国Ⅰ级保护植物。本文通过对其大孢子发生及雌配子发育过程进行细胞学观察发现,南方红豆杉胚珠多为直立单生,偶见1个苞片内着生2个胚珠;大孢子母细胞减数分裂形成4个大孢子,其中3个退化,仅位于合点端的大孢子发育为功能性大孢子;功能性大孢子经过有丝分裂形成256个游离核;颈卵器单生,2~6个;从传粉到受精约2个月;有16个原胚自由核,原胚为标准型;简单多胚和裂生多胚并存,胚发育不同步。因南方红豆杉胚珠直立单生、游离核数目、传粉到受精间隔期、原胚游离核数目等特征与松科差异较大,而与广义柏科具有许多相似之处,故我们支持将红豆杉科置于广义柏科之下的观点。此外,本研究结果还表明,南方红豆杉大孢子发生与雌配子体发育正常,不是致其濒危的主要原因。  相似文献   

12.
Ovule development, megasporogenesis and megagametogenesis in an aneuploid population of the arctic-alpine crucifer, Smelowskia calycina, were examined to test for the possibility of apomictic seed production. Whole mounts of ovules cleared in Herr's “4½” clearing fluid were examined using Nomarski differential interference microscopy. The campylotropous ovule was bitegmic, with a micropyle formed by both integuments. The single archesporial cell of a crassinucellar nucellus functioned directly as a megasporocyte, dividing to form a linear tetrad of megaspores. The chalazal megaspore divided to form an 8-nucleate, 7-celled gametophyte of the Polygonum type, having hooked synergids with a well-developed filiform apparatus and polar nuclei that fused prior to fertilization. In the absence of any anomalous development indicative of agamospermy, seed production was assumed to be sexual.  相似文献   

13.
A study of ovule and megagametophyte development in field- and greenhouse-grown plants of Glycine max (L.) Merrill and Phaseolus aureus Roxb. reveals several consistent features for both species. These features include: a multiple archesporium, enlargement of a primary sporogenous cell directly into a megasporocyte, production of unequal dyad cells, a functional chalazal megaspore, Polygonum-type development, and a hypostase. A filiform apparatus was not observed in either species. Several marked differences in development also occur. Phaseolus usually produces one sporogenous cell per ovule; Glycine produces 2–3 sporogenous cells per ovule. Meiosis II is synchronous in Phaseolus but nonsynchronous in Glycine. Linear tetrads are produced in Phaseolus, whereas linear and T-shaped tetrads are found in Glycine. Starch grains accumulate in the mature megagametophyte of Glycine but are absent at that stage in Phaseolus. The usefulness of the modified clearing fluid, benzyl benzoate-4½, for the study of ovule and megagametophyte development in Glycine max and Phaseolus aureus is here demonstrated. In addition, the study indicates for both species that megagametophyte development in plants grown under field conditions is markedly similar to development in plants grown in the more uniform conditions of the greenhouse. Accordingly, these findings suggest generally that embryological data collected from plants grown under greenhouse conditions will reflect those from plants found in nature.  相似文献   

14.
This paper describes megasporogenesis, microsporogenesis, and development of female and male gametophytes in Eleutherococcus senticosus. The main results are as follows: Flowers of E. senticosus are epigynous, pentamerous. Anthers are 4 -microsporangiate. An ovary has 5 loculi. Each ovary loculus has 2 ovules: the upper ovule and the lower ovule. The upper one is orthotropous and degenerates after the formation of archesporial cell, while the lower one is anatropous, unitegmic and crassinucellar, and able to continue developing. In male plants, microsporogenesis and development of male gametophytes took place in regular way, but a series of abnormal phenomena were found in megasporogenesis and development of female gametophytes. The microspore mother cells gave rise to tetrahedral tetrads by meiosis. Cytokinesis was of the simultaneous type. The mature pollen was 3-celled and shed singly. The anther wall formation belonged to the dicotyledonous type. At the stage of microspore mother cell, the anther wall consisted of four layers, i.e. epidermis, endothecium, middle layer, and tapetum. The tapetum was of glandular type and its most cells were binucleate. When microspores were at the uninucleate stage, the tapetum began to degenerate in situ. When microspores developed into 3-celled pollen grains, the tapetum had fully degenerates. In the lower ovule of male flower, the megaspore mother cell gave rise to a linear or “T” -shaped tetrad. In some cases, a new archesporial cell over the tetrad or two tetrads parallel or in a series were observed. Furthermore, the position of functional megaspore was variable; any one or two megaspores might be functional, or one megaspore gave rise to a uninucleate embryo sac, but two other megaspores also had a potentiality of developing into the embryo sac. In generally, on the day when flowers opened, female gametophytes contained only 4 cells: a central cell, two irregular synergids and one unusual egg cell. In female plants, microspore mother cells and secondary sporogenous cells were observed. But at the stage of secondary sporogenous cell, the newly differentiated tapetum took the appearance of degeneration. Later, during the whole stage of meiosis, the trace of degenerative tapetum could be seen. At last, the microsporangium degenerated and no tetrad formed. On the blossom day, all anthers shriveled without pollen grains. In female flowers, megasporogenesis and development of female gametophytes were normal: the tetrad of megaspores was linear or “T”-shaped; the chalazal megaspore was usually functional; the development of embryo sac was of the Polygonum type. On the blossom day, most embryo sacs consisted of 7 cells with 8 nuclei or 7 cells with 7 nuclei; but the egg apparatus was not fully developed. In hermaphroditic plants, microsporogenesis was normal but the development of male gametophytes was partially abnormal. When the hermaphroditic flowers blossomed, there were more or less empty pollen grains in the microsporangium and these pollen grains were quite different in size. The development of most gynoecia was normal but numerous abnormal embryo sacs could be seen. On the blossom day, female gametophytes were mainly 7-celled with 8-nuclei or with 7-nuclei or 4-celled with antipodal cells degenerated; the egg apparatus wasnot fully developed either.  相似文献   

15.
鹅毛竹大小孢子及雌雄配子体发育   总被引:1,自引:0,他引:1  
利用扫描电镜、透射电镜、石蜡切片,对鹅毛竹的花芽分化、大、小孢子及雌、雄配子体的发育进行了详细观察.结果发现:鹅毛竹花药具4个药室,花药壁由表皮、药室内壁、中层、绒毡层4层结构组成,花药壁发育为单子叶型,绒毡层为腺质型,小孢子母细胞减数分裂中的胞质分裂为连续型,产生左右对称型小孢子.鹅毛竹成熟花粉大多2细胞型,都具1个萌发孔.鹅毛竹子房为单子房,子房1室,侧膜胎座,一个倒生胚珠,双珠被,薄珠心.大孢子母细胞由一个雌性孢原细胞直接发育而成,大孢子四分体呈线型,合点端一个大孢子分化为功能大孢子,由功能大孢子经过3次有丝分裂形成8核胚囊,发育类型为蓼型,位于核点端的3个细胞核进行多次分裂形成多个反足细胞.至此,成熟胚囊形成.并就鹅毛竹不结实的原因进行了探讨.  相似文献   

16.
Browne , Edward T., Jr . (U. of Kentucky, Lexington.) Morphological studies in Aletris. I. Development of the ovule, megaspores and megagametophyte of A. aurea and their connection with the systematics of the genus. Amer. Jour. Bot. 48(2): 143–147. Illus. 1961.—Development in a North American species of this variously classified genus has shown great similarity with the development in several genera of Hutchinson's Liliaceae-Narthecieae: Pleea, Tofieldia, Nanhecium and ∗∗∗Metaparthecium. The ovules are anatropous, bitegmic, crassinucellate and arranged in 4 rows in each locule of the tricarpellate pistil. There is a hypostase and an obturator. The primary archesporial cell is hypodermal. This undergoes a division to form a wall cell and the megaspore parent cell (MPC). The megaspores usually have a linear arrangement although occasionally a T-shaped tetrad may be formed. Most frequently the chalazal megaspore functions, but rarely the one adjacent to it may enlarge instead. Megagametophyte development is of the Polygonum type. A characteristic narrowed chalazal constriction is formed during the development of the megagametophyte. It is recommended on the basis of this information that Aletris be classified with the genera of the Liliaceae-Narthecieae.  相似文献   

17.
云南松雌雄配子体的发育   总被引:3,自引:0,他引:3  
云南松(Pinus yunnanensis Fr.)雄配子体于10月在小孢子叶腹面产生二个小孢子囊,内有许多进行分裂的造孢组织细胞。第二年一月下旬至二月初小孢子母细胞进行减数分裂。在分裂期间,细胞内所贮存的淀粉粒的分布发生变化。二月初四分体小孢子形成,绒毡层细胞解体。二日中旬单核花粉粒形成,外壁扩展形成二个异极对称的气囊。三月花粉在四细胞时期散发。 雌配子体于二月上旬在珠心皮下分化出孢原细胞。二月下旬大孢子母细胞进入减数分裂期。三月初直列四分体大孢子形成,珠孔端三个退化,合点端一个功能大孢子进入有丝分裂期,形成约32个游离核的配子体。次年三月初雌配子体形成,四月初中央细胞核分裂,四月底颈卵器成熟,卵核周围产生辐射状原生质纤丝。五月初受精开始。云南松雌雄配子体的发育与亚热带分布的P.roburghii相似。  相似文献   

18.
In this study anther ontogeny of Campsis radicans (L.) Seem. was investigated by transmission electron microscopy and light microscopy with special reference to the development of the anther wall. The anther wall formation follows the dicotyledonous type. The differentiation in anther starts with the appearance of archesporial cells which undergo periclinal divisions to give primary parietal layer to the epidermal site and the primary sporogenous cells to the inside. The primary parietal layer also divides to form two secondary parietal layers. Later, the outer secondary parietal layer (spl1) forms the endothecium and the middle layer by periclinal division whereas the inner one (spl2) directly develops into the outer tapetum forming the inner most layer of the anther wall. The sporogenous tissue is generally organized in two rows of cells with a horseshoe-shaped outline. The remainder of the tapetum lining the sporogenous mass is derived from the connective tissue. The tapetum thus has dual origin and dimorphic. Anthers are tetrasporangiate. The wall of the anther consists of an epidermis, endothecium, middle layer, and the secretory type tapetum. Tapetal cells are usually binucleated. Epidermis and Endothecium layers of anther wall remain intact until the end of anther and pollen development; however, middle layer and tapetum disappear during development.  相似文献   

19.
秦艽的胚胎学研究   总被引:11,自引:1,他引:10  
秦艽具5个雄蕊,花药壁的发育属于双子叶型,为变形绒毡尾,花粉母细胞减粉分裂时的胞质分裂为同时型,四分孢子主要呈四面体型,成熟花粉粒球形,具3-孔沟,多为2细胞。子房一定,中轴胎座,其上着生众多具单珠被,薄珠心的倒生胚珠,大孢子母细胞减数分裂形成线型四分体。合点端大孢子继续发育,少数为合点端第二个大孢子形成功能大孢子,胚囊发育属蓼型,受精作用属于有丝分裂前配子融合类型,胚按茄型发育,胚乳核型,胚乳早  相似文献   

20.
利用常规石蜡制片法研究了海桐大、小孢子发生及雌、雄配子体发育的过程。结果显示:(1)小孢子母细胞减数分裂过程中的胞质分裂为连续型,四分孢子为以四面体形为主,四分孢子后期部分小孢子壁皱缩;(2)花药壁由4层结构组成,由外到内为表皮、药室内壁、中层和绒毡层;(3)海桐具多个胚珠,单珠被,薄珠心,胚珠类型为倒生胚珠。大孢子母细胞减数分裂主要形成线形排列的4个大孢子,还具有少有的十字形排列,功能大孢子位于合点端;(4)胚囊发育属单孢型的蓼型,成熟的雌配子体为四细胞五核胚囊。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号