首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The amount of energy allocated to growth versus other functions is a fundamental feature of an organism's life history. Constraints on energy availability result in characteristic trade‐offs among life‐history traits and reflect strategies by which organisms adapt to their environments. Freshwater mussels are a diverse and imperiled component of aquatic ecosystems but little is known about their growth and longevity. Generalized depictions of freshwater mussels as ‘long‐lived and slow‐growing’ may give an unrealistically narrow view of life‐history diversity which is incongruent with the taxonomic diversity of the group and can result in development of inappropriate conservation strategies. We investigated relationships among growth, longevity, and size in 57 species and 146 populations of freshwater mussels using original data and literature sources. In contrast to generalized depictions, longevity spanned nearly two orders of magnitude, ranging from 4 to 190 years, and the von Bertalanffy growth constant, K, spanned a similar range (0.02–1.01). Median longevity and K differed among phylogenetic groups but groups overlapped widely in these traits. Longevity, K, and size also varied among populations; in some cases, longevity and K differed between populations by a factor of two or more. Growth differed between sexes in some species and males typically reached larger sizes than females. In addition, a population of Quadrula asperata exhibited two distinctly different growth trajectories. Most individuals in this population had a low‐to‐moderate value of K (0.15) and intermediate longevity (27 years) but other individuals showed extremely slow growth (K = 0.05) and reached advanced ages (72 years). Overall, longevity was related negatively to the growth rate, K, and K explained a high percentage of variation in longevity. By contrast, size and relative shell mass (g mm?1 shell length) explained little variation in longevity. These patterns remained when data were corrected for phylogenetic relationships among species. Path analysis supported the conclusion that K was the most important factor influencing longevity both directly and indirectly through its effect on shell mass. The great variability in age and growth among and within species shows that allocation to growth is highly plastic in freshwater mussels. The strong negative relationship between growth and longevity suggests this is an important trade‐off describing widely divergent life‐history strategies. Although life‐history strategies may be constrained somewhat by phylogeny, plasticity in growth among populations indicates that growth characteristics cannot be generalized within a species and management and conservation efforts should be based on data specific to a population of interest.  相似文献   

2.
Marian Beekman  Hélène Blanché  Markus Perola  Anti Hervonen  Vladyslav Bezrukov  Ewa Sikora  Friederike Flachsbart  Lene Christiansen  Anton J. M. De Craen  Tom B. L. Kirkwood  Irene Maeve Rea  Michel Poulain  Jean‐Marie Robine  Silvana Valensin  Maria Antonietta Stazi  Giuseppe Passarino  Luca Deiana  Efstathios S. Gonos  Lavinia Paternoster  Thorkild I. A. Sørensen  Qihua Tan  Quinta Helmer  Erik B. van den Akker  Joris Deelen  Francesca Martella  Heather J. Cordell  Kristin L. Ayers  James W. Vaupel  Outi Törnwall  Thomas E. Johnson  Stefan Schreiber  Mark Lathrop  Axel Skytthe  Rudi G. J. Westendorp  Kaare Christensen  Jutta Gampe  Almut Nebel  Jeanine J. Houwing‐Duistermaat  Pieternella Eline Slagboom  Claudio Franceschi  the GEHA consortium 《Aging cell》2013,12(2):184-193
Clear evidence exists for heritability of human longevity, and much interest is focused on identifying genes associated with longer lives. To identify such longevity alleles, we performed the largest genome‐wide linkage scan thus far reported. Linkage analyses included 2118 nonagenarian Caucasian sibling pairs that have been enrolled in 15 study centers of 11 European countries as part of the Genetics of Healthy Aging (GEHA) project. In the joint linkage analyses, we observed four regions that show linkage with longevity; chromosome 14q11.2 (LOD = 3.47), chromosome 17q12‐q22 (LOD = 2.95), chromosome 19p13.3‐p13.11 (LOD = 3.76), and chromosome 19q13.11‐q13.32 (LOD = 3.57). To fine map these regions linked to longevity, we performed association analysis using GWAS data in a subgroup of 1228 unrelated nonagenarian and 1907 geographically matched controls. Using a fixed‐effect meta‐analysis approach, rs4420638 at the TOMM40/APOE/APOC1 gene locus showed significant association with longevity (P‐value = 9.6 × 10?8). By combined modeling of linkage and association, we showed that association of longevity with APOEε4 and APOEε2 alleles explain the linkage at 19q13.11‐q13.32 with P‐value = 0.02 and P‐value = 1.0 × 10?5, respectively. In the largest linkage scan thus far performed for human familial longevity, we confirm that the APOE locus is a longevity gene and that additional longevity loci may be identified at 14q11.2, 17q12‐q22, and 19p13.3‐p13.11. As the latter linkage results are not explained by common variants, we suggest that rare variants play an important role in human familial longevity.  相似文献   

3.
In this study we present the results of an analysis of differential longevity associated with Drosophila buzzatii second chromosome inversion karyotypes based on the assessment of more than 1000 individuals collected in a natural population. Comparisons of inversion frequencies between emerged and bait-collected flies showed not only that inversion arrangements were associated with differential longevity, but also that selection was sex specific. Because each individual fly was scored for thorax length and karyotype, we were able to show that longevity selection favoring larger flies coupled with the average effect of inversions on thorax length can account for the change of inversion frequencies due to longevity in females. The observed genotypic-by-sex interaction could be an important mechanism involved in the maintenance of the polymorphism. Arrangement 2Jz3, which was shown to impaired fecundity in two independent previous studies, exhibited a positive effect on longevity. This pattern of negative pleiotropy may be another plausible mechanism accounting for the maintenance of the polymorphism.  相似文献   

4.
Human longevity is characterized by a remarkable lack of confirmed genetic associations. Here, we report on the identification of a novel locus for longevity in the RAD50/IL13 region on chromosome 5q31.1 using a combined European sample of 3208 long‐lived individuals (LLI) and 8919 younger controls. First, we performed a large‐scale association study on 1458 German LLI (mean age 99.0 years) and 6368 controls (mean age 57.2 years) by targeting known immune‐associated loci covered by the Immunochip. The analysis of 142 136 autosomal single nucleotide polymorphisms (SNPs) revealed an Immunochip‐wide significant signal (PImmunochip = 7.01 × 10–9) for the SNP rs2075650 in the TOMM40/APOE region, which has been previously described in the context of human longevity. To identify novel susceptibility loci, we selected 15 markers with PImmunochip < 5 × 10–4 for replication in two samples from France (1257 LLI, mean age 102.4 years; 1811 controls, mean age 49.1 years) and Denmark (493 LLI, mean age 96.2 years; 740 controls, mean age 63.1 years). The association at SNP rs2706372 replicated in the French study collection and showed a similar trend in the Danish participants and was also significant in a meta‐analysis of the combined French and Danish data after adjusting for multiple testing. In a meta‐analysis of all three samples, rs2706372 reached a P‐value of PImmunochip+Repl = 5.42 × 10?7 (OR = 1.20; 95% CI = 1.12–1.28). SNP rs2706372 is located in the extended RAD50/IL13 region. RAD50 seems a plausible longevity candidate due to its involvement in DNA repair and inflammation. Further studies are needed to identify the functional variant(s) that predispose(s) to a long and healthy life.  相似文献   

5.
1. Freshwater shrimps often dominate the biomass of tropical island streams and are known to have strong effects on stream ecosystem structure and function, but little effort has been dedicated toward quantifying basic energetic and life history attributes such as growth, production and longevity. Such information is critical for understanding both the role of shrimps in ecosystem dynamics and the gravity of threats to shrimp populations posed by human activities such as shrimp harvesting, dam construction and water withdrawal. 2. We quantified growth rates and secondary production of dominant freshwater shrimps for 3 years in two Puerto Rican headwater streams that differ in food web structure because of the presence or absence of predatory fishes that are excluded from reaches above waterfalls. Using growth data, we constructed a minimum longevity model to explore the likely minimum life spans of the two dominant taxa (Atya spp. and Xiphocaris elongata). Finally, we used a bioenergetics model to quantify annual consumption rates of major basal resources by the two taxa. 3. Daily growth rates ranged from ?0.001 to 0.011 day?1, were inversely related to body size, and were higher for small individuals of X. elongata than Atya spp. Mean annual shrimp biomass and secondary production were an order of magnitude higher in the stream that lacked predatory fishes (biomass: 4.34 g AFDM m?2; production: 0.89 g AFDM m?2 year?1) than in the stream with predatory fishes (biomass: 0.12 g AFDM m?2; production: 0.02 g AFDM m?2 year?1). Production : biomass ratios ranged from 0.01 to 0.38. 4. Our longevity model predicted a minimum life span of 8 years for Atya spp. and 5 years for X. elongata in the stream lacking predatory fishes. In contrast, due to a larger average size of X. elongata in the stream with predatory fishes, our model predicted a minimum life span of 11 years. Actual life spans of these taxa are likely to be much longer based on long‐term observations of marked individuals. 5. Estimated consumption rates from the bioenergetics model indicated that Atya spp. and X. elongata are important processors of organic matter resources in streams where they occur at high densities. Atya spp. and X. elongata appeared capable of consuming a large proportion of algal and insect production and the proportion of direct leaf litter inputs consumed was also appreciable (c. 40–60%). However, the consumption of suspended fine particulate organic matter (SFPOM) by Atya spp. is probably only a minor proportion of total SFPOM flux in these streams. 6. Our study suggests that geomorphic features such as waterfalls may play an important role in controlling the distribution and production of freshwater shrimps through their effects on predatory fish movement. Spatial differences in shrimp densities result in landscape‐scale variation in the significance to ecosystem processes of these long‐lived organisms, particularly as processors of major organic matter resources.  相似文献   

6.
The minirhizotron technique (MR) for in situ measurement of fine root dynamics offers the opportunity to obtain accurate and unbiased estimates of root production in perennial vegetation only if MR tubes do not affect the longevity of fine roots. Assuming fine root biomass is near steady-state, fine root production (g m–2 yr–1) can be estimated as the ratio of fine root biomass (g m–2) to median fine root longevity (yr). This study evaluates the critical question of whether MR access tubes affect the longevity of fine roots, by comparing fine root survivorship obtained using MR with those from a non-intrusive in situ screen method in the forest floor horizons of a northern hardwood forest in New Hampshire, USA. Fine root survivorship was measured in 380 root screens during 1993–1997 and in six horizontal minirhizotron tubes during 1996–1997. No statistically significant difference was found between estimates of survivorship of fine roots (<1 mm dia.) at this site from MR versus from in situ screens, suggesting that MR tubes do not substantially affect fine root longevity in the forest floor of this northern hardwood forest and providing greater confidence in measurements of fine root production using the MR technique. Furthermore, the methodology for estimating fine root production from MR longevity data was evaluated by comparison of fine root longevity and production estimates made using single vs. multiple root cohorts, and using root-number, root-length, and root-mass weighted methods. Our results indicate that fine root-length longevity estimates based on multiple root cohorts throughout the year can be used to approximate fine root biomass production. Using this method, we estimated fine root longevity and production in the forest floor at this site to be 314 days (or 0.86 yr) and 303 g m–2 yr–1, respectively. Fine root production in this northern hardwood forest is approximately equivalent to standing biomass and was previously underestimated by root in-growth cores. We conclude that the use of MR to estimate fine root longevity and production as outlined here may result in improved estimates of fine root production in perennial vegetation.  相似文献   

7.
The question as to the role that genes play in determining life-span is essentially unresolved. Although it is well documented that genotype influences longevity, this is no way demonstrates that life-span is genetically determined. In the present study we examine five temperature-sensitive mutations for their effect on the aging process. At the permissive temperature (22°C ), the longevity of each mutant strain is comparable to that of wild type. However, at the restrictive temperature (29°C ) the life-span of these mutants is severely curtailed. Using behavior loss as a landmark of adult physiological age, we examined each of these strains for its pattern of behavior loss relative to longevity, and compared each to a wild-type strain. In four of the mutations the pattern of behavior loss relative to longevity was severely altered at one or both temperatures. However, one strain, adl-16tsl displayed a pattern of behavior loss that was indistinguishable from wild type at both 22°C and 29°C. At 29°C not only was the longevity decreased, the pattern of behavior loss was also compressed into a shorter time period. The compression of the pattern of behavior loss was proportional to the reduction in life-span. Thus it appears that this mutation, adl-16tsl, may accelerate the normal aging process when placed at 29°C. The potential utility of these types of mutants for studying the aging process is discussed.  相似文献   

8.
Question: The recovery of forest plant communities in post‐agricultural landscapes is largely determined by dispersal constraints, but can environmental legacies of former land use additionally limit the recolonization of recent forests by forest herbs? Location: Ancient forest and recent forest on former heavily fertilized agricultural land (Muizenbos, northern Belgium). Methods: Seeds and adults of two forest herbs with similar life‐history traits, but contrasting colonization capacity – the fast‐colonizing Geum urbanum and the slow‐colonizing Primula elatior– were introduced into both ancient and recent forest sites. Soil conditions and plant tissue nutrient concentrations were measured to characterize habitat quality. To determine whether the introduced species could successfully establish and persist, we monitored recruitment, longevity and adult performance during 8 years in permanently marked plots. Results: Phosphorus availability was ten times higher in recent forest soils and was also reflected in the plant tissue samples. Species longevity was clearly lower in recent forest sites indicating higher turnover. The fast‐colonizing G. urbanum counterbalanced this lower longevity by new establishment, while the slow‐colonizing P. elatior dropped below the number of originally introduced individuals. Additionally, G. urbanum performed better in recent forest sites in contrast to P. elatior. Conclusions: Even when dispersal constraints of the slow‐colonizing forest herb P. elatior are eliminated through introduction, environmental conditions in recent forest sites additionally restrict its recruitment, longevity and performance. These experimental results suggest that environmental constraints may strengthen the differences in colonization capacity among forest herbs if slow dispersers also tend to be less likely to establish.  相似文献   

9.
The longevity of organisms is intrinsically interesting and can provide useful information on their population structure and dynamics and the dynamics of associated communities. With the exception of perennial Laminariales that have rings in the stipe, the life spans of most perennial macroalgae are unknown or based on anecdotal observations. Using morphological analyses combined with the location and time of the rise in 14C from atmospheric nuclear testing within the thallus, we determined that the growth rate of a specimen of Clathromorphum nereostratum Lebednik from Adak Island was 0.30 mm·yr?1, the 30 bands within the thallus were annual, and the specimen sampled was 61–75 years old. Living crusts of this species from the same geographic region are reported to be up to 20 cm thick. Assuming our growth rate is typical, C. nereostratum can be approximately 700 years old, the oldest known living alga. This longevity and consistent banding within the thallus suggest that smaller scale sampling and additional chemical analyses of this alga could provide a detailed long‐term record of environmental variation at high latitudes in the North Pacific.  相似文献   

10.
Glucose metabolism marks health and disease and is causally inferred in the aging process. Ambulant continuous glucose monitoring provides 24‐h glucose rhythms under daily life conditions. We aimed to describe ambulant 24‐h glucose rhythms measured under daily life condition in relation to calendar and biological age in apparently healthy individuals. In the general population and families with propensity for longevity, we studied parameters from 24‐h glucose rhythms; glucose levels; and its variability, obtained by continuous glucose monitoring. Participants were 21 young (aged 22–37 years), 37 middle‐aged (aged 44–72 years) individuals from the general population, and 26 middle‐aged (aged 52–74 years) individuals with propensity for longevity. All were free of diabetes. Compared with young individuals, middle‐aged individuals from the general population had higher mean glucose levels (5.3 vs. 4.7 mmol L?1, P < 0.001), both diurnally (P < 0.001) and nocturnally (P = 0.002). Glucose variability was higher in the middle‐aged compared with the young (standard deviation 0.70 vs. 0.57 mmol L?1, P = 0.025). Compared with middle‐aged individuals from the general population, middle‐aged individuals with propensity for longevity had lower overall mean glucose levels (5.2 vs. 5.4 mmol L?1, P = 0.047), which were more different nocturnally (4.8 vs. 5.2 mmol L?1, P = 0.003) than diurnally (5.3 vs. 5.5 mmol L?1, P = 0.14). There were no differences in glucose variability between these groups. Results were independent of body mass index. Among individuals without diabetes, we observed significantly different 24‐h glucose rhythms depending on calendar and biological age.  相似文献   

11.
Exceptional longevity (EL) is a rare phenotype that can cluster in families, and co‐segregation of genetic variation in these families may point to candidate genes that could contribute to extended lifespan. In this study, for the first time, we have sequenced a total of seven exomes from exceptionally long‐lived siblings (probands ≥ 103 years and at least one sibling ≥ 97 years) that come from three separate families. We have focused on rare functional variants (RFVs) which have ≤ 1% minor allele frequency according to databases and that are likely to alter gene product function. Based on this, we have identified one candidate longevity gene carrying RFVs in all three families, APOB. Interestingly, APOB is a component of lipoprotein particles together with APOE, and variants in the genes encoding these two proteins have been previously associated with human longevity. Analysis of nonfamilial EL cases showed a trend, without reaching statistical significance, toward enrichment of APOB RFVs. We have also identified candidate longevity genes shared between two families (5–13) or within individual families (66–156 genes). Some of these genes have been previously linked to longevity in model organisms, such as PPARGC1A, NRG1, RAD52, RAD51, NCOR1, and ADCY5 genes. This work provides an initial catalog of genes that could contribute to exceptional familial longevity.  相似文献   

12.
Ames dwarf (Prop1df, df/df) mice are characterized by growth hormone (GH), prolactin, and thyrotropin deficiency, remarkable extension of longevity and increased insulin sensitivity with low levels of fasting insulin and glucose. Plasma levels of anti‐inflammatory adiponectin are increased in df/df mice, while pro‐inflammatory IL‐6 is decreased in plasma and epididymal fat. This represents an important shift in the balance between pro‐ and anti‐inflammatory adipokines in adipose tissue, which was not exposed to GH signals during development or adult life. To determine the role of adipose tissue in the control of insulin signaling in these long‐living mutants, we examined the effects of surgical removal of visceral (epididymal and perinephric) adipose tissue. Comparison of the results obtained in df/df mice and their normal (N) siblings indicated different effects of visceral fat removal (VFR) on insulin sensitivity and glucose tolerance. The analysis of the expression of genes related to insulin signaling indicated that VFR improved insulin action in skeletal muscle in N mice. Interestingly, this surgical intervention did not improve insulin signaling in df/df mice skeletal muscle but caused suppression of the signal in subcutaneous fat. We conclude that altered profile of adipokines secreted by visceral fat of Ames dwarf mice may act as a key contributor to increased insulin sensitivity and extended longevity of these animals.  相似文献   

13.
冯璐  卜兆君  李振新  冯亚敏 《生态学报》2015,35(9):2993-2997
长寿有性繁殖体对于植物种群的长存具有重要意义,迄今,泥炭地苔藓植物孢子长寿性研究还很少。在长白山哈泥泥炭地钻取丘间表层泥炭样品,测定泥炭腐殖化度和烧失量,逐层提取和培养泥炭藓孢子,研究埋藏时间对孢子萌发的影响。结果表明,丘间泥炭藓孢子埋藏环境中,随着埋深的增加即埋藏年限的增加,泥炭腐殖化度和烧失量总体上分别呈现增加和递减的趋势,而地层泥炭藓孢子萌发率呈现直线递减的规律,但在埋藏近150余年后孢子萌发率仍可达40%。研究进一步证明泥炭藓具有长期持久孢子库,根据推算,泥炭地丘间埋藏环境中,泥炭藓孢子最大寿命可超过400a。  相似文献   

14.
Age validation and estimates of longevity of yellowedge grouper (Epinephelus flavolimbatus) from the Gulf of Mexico (GOM) are needed to inform fishery management decisions. Yellowedge grouper sagittal otoliths (n = 100) were collected, aged using conventional means, and cores were submitted for radiocarbon (14C) measurement. Radiocarbon values of yellowedge grouper otoliths were compared to established radiocarbon chronologies in the region to validate the age and ageing methodology of this species. The yellowedge grouper chronology displayed a similar sigmoidal trend as previously published chronologies. In addition to the core analysis, multiple areas on otolith sections from eight specimens were analyzed for Δ14C to validate age estimates for fish born prior to the 14C increase. Our results indicate that yellowedge grouper live longer than previously reported (minimum of 40 years based on radiocarbon measurements). The validated ageing methodology supported an estimated maximum longevity of 85 years and established that yellowedge grouper have the longest lifespan currently known for any species of grouper in the GOM. Results also indicate a depth-age interaction in that material extracted from adult otolith sections assigned to post-bomb dates exhibited lower Δ14C values than cores (juvenile material) assigned to the same post-bomb dates. This finding is likely explained by lower 14C levels reported from water masses at deeper depths (>100 m) which are inhabited by adults.  相似文献   

15.
Nutrient conservation in plants and soil fertility may be intricately linked. We studied nitrogen conservation in small Scots pine (Pinus sylvestrisL.) trees growing in stands on organogenic Dystric Histosols and on mineral Podzols. Nitrogen-resorption efficiency (NRE) and proficiency (NRP) of senescent needles, and mean residence time of nitrogen (MRT) were studied in relation to needle surface area, needle longevity, and leaf mass per area (LMA). Trees on Podzols had higher nitrogen concentration in green needles than the trees on Dystric Histosols, but the nitrogen concentration of yellowing needles was similar for trees on both soil types. NRE averaged 65±3.5% (mean±SD) and 56±7.2% for the trees on Podzols and Dystric Histosols, respectively. Neither NRP (0.44±0.05% and 0.35±0.07%, respectively) nor MRT (8.4±2.3 and 6.1±1.2 years) differed significantly between the stands on the two soil types. Mean needle surface area was significantly smaller in trees on Dystric Histosols (76±29 mm2) than on Podzols (131±38 mm2), whereas needle longevity varied between 2 and 4 years independently of the soil type. Trees invested, on average, the same amount of dry matter per unit of needle area on both soil types. Growth of trees, measured as increment of shoot length, was more restricted on Dystric Histosols (55±18 mm yr–1) than on Podzols (184±44 mm yr–1). The results of the correlation analysis applied to pooled data were inconsistent with the relations between traits of stress resistance syndrome observed in inter-specific comparisons. The study indicated that Scots pine trees relocated nitrogen from senescent foliage more efficiently on mineral Podzols than on organogenic Dystric Histosols, but the minimum nitrogen concentration of needles appeared to be similar on both soil types.  相似文献   

16.
Christof Bigler  Thomas T. Veblen 《Oikos》2009,118(8):1130-1138
For trees, fast growth rates and large size seem to be a fitness benefit because of increased competitiveness, attainment of reproductive size earlier, reduction of generation times, and increased short‐term survival chances. However, fast growth rates and large size entail reduced investment in defenses, lower wood density and mechanical strength, increased hydraulic resistance as well as problems with down‐regulation of growth during periods of stress, all of which may decrease tree longevity. In this study, we investigated the relationship between longevity and growth rates of trees and quantified effects of spatial environmental variation (elevation, slope steepness, aspect, soil depth) on tree longevity. Radial growth rates and longevities were determined from tree‐ring samples of 161 dead trees from three conifer species in subalpine forests of the Colorado Rocky Mountains (Abies lasiocarpa, Picea engelmannii) and the Swiss Alps (Picea abies). For all three species, we found an apparent tradeoff between growth rate to the age of 50 years and longevity (i.e. fast early growth is associated with decreased longevity). This association was particularly pronounced for larger P. engelmannii and P. abies, which attained canopy size, however, there were also significant effects for smaller P. engelmannii and P. abies. For the more shade‐tolerant A. lasiocarpa, tree size did not have any effect. Among the abiotic variables tested only northerly aspect significantly favored longevity of A. lasiocarpa and P. engelmannii. Trees growing on south‐facing aspects probably experience greater water deficits leading to premature tree death, and/or shorter life spans may reflect shorter fire intervals on these more xeric aspects. Empirical evidence from other studies has shown that global warming affects growth rates of trees over large spatial and temporal scales. For moist‐cool subalpine forests, we hypothesize that the higher growth rates associated with global warming may in turn result in reduced tree longevity and more rapid turnover rates.  相似文献   

17.
Atrophy is one of the major age‐related changes in the brain. The absence of brain atrophy in elderly individuals reflects deceleration in the process of biological aging. Moreover, results from human twin studies suggest a large genetic influence on the variance of human brain tissue volumes. To investigate the association of brain volumes with exceptional longevity, we tested whether middle‐aged to elderly offspring of nonagenarian siblings have larger brain volumes than their spouses using magnetic resonance imaging. No differences in whole brain, gray matter and white matter volume were found. These brain volumes were associated with chronological age in offspring and control subjects (all P < 0.001). Left amygdalar volume of the offspring was larger (P = 0.03) compared with control subjects [mean volume offspring (cm3) (95% confidence interval, CI) = 1.39 (1.36–1.42), mean volume control subjects (cm3) (95% CI) = 1.32 (1.29–1.35)]. Association of left amygdalar volume with familial longevity was particularly pronounced when offspring with the oldest long‐lived parent were compared with control subjects (P = 0.01). Amygdalar volumes were not associated with chronological age in both groups. Our findings suggest that the observed association of a larger left amygdalar volume with familial longevity is not caused by a relative preservation of the left amygdala during the course of aging but most likely a result of early development caused by a genetic familial trait.  相似文献   

18.
Larger and longer lived flowers receive more pollinators, but may also involve increased water maintenance costs under hot, dry environments. Hence, smaller and/or short-lived flowers may buffer such costs. We surveyed floral longevity in three large-flowered Mediterranean Cistus species. We hypothesize that: (1) in Cistus, floral longevity decreases with increasing air temperature and flower size; (2) in C. ladanifer, flower size and longevity increase along an altitudinal gradient; (3) floral longevity is differentially affected by temperature rather than flower size along the gradient; (4) under similar temperature, floral longevity decreases with flower size. For each species, we evaluated the effects of flower size and air temperature on floral longevity. Specifically, floral longevity was surveyed along an altitudinal gradient in the largest flowered species Cistusladanifer. Floral longevity in Cistus species lasted < 1 d and was affected by air temperature, independently of flower size. In C. ladanifer, flower size increased along the gradient but floral longevity decreased. Still, floral longevity decreased with increasing air temperature and, to a lesser extent, with flower size. Together, our findings show a triangular relationship among air temperature, flower size and floral longevity with margins for plasticity to accommodate pollinator attraction with the costs of large-flowered Mediterranean plants.  相似文献   

19.
1. Centenarian species, defined as those taxa with life spans that frequently exceed 100 years, have long been of interest to ecologists because they represent an extreme end point in a continuum of life history strategies. One frequently reported example of a freshwater centenarian is the obligate cave crayfish Orconectes australis, with a maximum longevity reported to exceed 176 years. As a consequence of its reported longevity, O. australis has been used as a textbook example of life history adaptation to the organic‐carbon limitation that characterises many cave‐stream food webs. 2. Despite being widely reported, uncertainties surround the original estimates of longevity for O. australis, which were based on a single study dating from the mid‐1970s. In the present study, we re‐evaluated the growth rate, time‐to‐maturity, female age‐at‐first‐reproduction and longevity of O. australis using a mark–recapture study of more than 5 years based upon more than 3800 free‐ranging individuals from three isolated cave streams in the south‐eastern United States. 3. The results of our study indicate that accurate estimates of the longevity of O. australis are ≤22 years, with only a small proportion of individuals (<5%) exceeding this age. Our estimates for female time‐to‐maturity (4–5 years) and age‐at‐first‐reproduction (5–6 years) are also substantially lower than earlier estimates. 4. These new data indicate that the age thresholds for life history events of O. australis are comparable to other estimates for a modest assemblage of cave and surface species of crayfish for which credible age estimate exists, suggesting that a cave environment per se is not required for the evolution of extreme longevity in crayfish.  相似文献   

20.
Summary Creeping bentgrass is a very important turfgrass species used extensively on golf course greens, fairways, and tees. One of the challenges of creeping bentgrass management is the control of grassy weeds, most of which respond to herbicides in a similar manner to that of creeping bentgrass. As part of a weed management program for golf courses, Roundup?-tolerant creeping bentgrass will be simple to employ and more effective in controlling problem weeds than currently available methods. The goal of this research was to evaluate fitness-related reproductive traits in four transgenic creeping bentgrass events modified to express a Roundup?-tolerant gene, cp4 epsps, to determine if these creeping bentgrass events had gained an unexpected reproductive fitness advantage. We compared transgenic events ASR 333, ASR801 with their nontransformed tissue culture line, C99056L and transgenic events ASR365, ASR368 with their non-transformed tissue culture line, B99061R. Populations of plants from three conventional cultivars were also included for comparison to determine whether significant variations, if present in transgenic events, were novel to the non-transformed organism, Agrostis stolonifera L. Our results showed that none of the four transgenic events surveyed were significantly different from the respective non-transformed tissue culture line plants for the following characteristics: first heading date, anthesis duration, inflorescence length, number of florets per inflorescence, pollen size, and seed-set capacity through open-pollination. One of the transgenic events, ASR333, needed significantly more days for anthesis initiation than the nontransformed tissue culture line, C99056L; while another transgenic event, ASR801, exhibited significantly shorter pollen longevity than plants of the tissue culture line, C99056L. However, ASR801 was not significantly different from the conventional cultivars ‘Penn A-4’ and ‘Penncross’ for pollen longevity. Plants of both transgenic events ASR365 and ASR368 did not differ significantly from plants of the tissue culture line, B99061R, for all characters measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号