首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The quantity of total fatty acids in soybean cotyledons during aging, senescence and regreening has been studied. The greatest change in the fatty acid profile during the initial greening of the cotyledons (4–7 days after germination) was a 130% increase in the content of linolenate. Linoleate, as in the case of the other fatty acids, declined in the first 4 days and then increased by 7 days. Following the 10th day after germination, the quantity of palmitate, linoleate, and linolenate decreased continuously through senescence to 20–28% of the maximum quantity of each. When the cotyledons were regreened by removal of the epicotyl 15 or 16 days after germination, linolenate was present in quantities substantially higher than in the senescing cotyledon. On the 22nd day after germination, the quantity of linolenate in regreened tissue was 140% greater than that in senescing tissue of the same age. By contrast, the quantity of linoleate was only 30–40% greater in regreening tissue and the quantity of most of the other fatty acids was similar in both tissues. Similar changes in the quantity of chloroplast fatty acids were observed during this period. Removal of the epicotyl resulted in a higher level of chloroplast linolenate. During aging, the total chlorophyll and the number of chloroplasts reached a maximum on the 10th day and decreased rapidly during senescence. The amount of chlorophyll per chloroplast remained relatively constant during this period whereas the quantity of linolenate per chloroplast decreased during senescence. It is suggested that major structural changes observed in chloroplast membranes may be related to changes in fatty acid composition, but are not dependent on changes in chlorophyll concentration.  相似文献   

2.
Newman DW 《Plant physiology》1966,41(2):328-334
The fatty acids of plastids from several types of mineral-deficient and senescent tissues were analyzed. Incorporation of acetate into long-chain fatty acids of leaf tissue and of plastids from nitrogen-deficient and normal plants was determined. In general, the senescent and nitrogen-deficient chloroplasts contained a higher ratio of saturates to unsaturates than did plastids from younger tissues and from tissues grown on a complete nutrient.

Nitrogen-deficient leaf tissue and plastids were capable of rapidly incorporating acetate into some of the fatty acids, especially palmitic and oleic acids. However, the comparative rate of acetate incorporation into linolenic acid in nitrogen-deficient chlorophyllous tissue was less than in tissue grown on a complete nutrient. With the addition of UDP-glucose to a reaction mixture containing added cofactors for noncyclic photosynthetic phosphorylation the relative incorporation of acetate into linolenate as compared to palmitate was increased in both the nitrogen-deficient and normal leaf tissue. This would indicate that nitrogen-deficient tissues have the enzymic systems for forming long-chain fatty acids but that the reduced photosynthesis limits the amount of precursors for the formation of lipids, especially galactolipids. However, nothing is known about the rate of fatty acid degradation under these conditions.

  相似文献   

3.
Paramecium requires oleate for growth. The phospholipids of the ciliate contain high concentrations of palmitate and 18- and 20-carbon unsaturated fatty acids. We previously showed that radiolabeled oleate is desaturated and elongated to provide these 18- and 20-carbon unsaturated acids. We now report on saturated fatty acid (SFA) metabolism in Paramecium. Radiolabeled palmitate and stearate were incorporated directly into cellular phospholipids with little or no desaturation and/or elongation. Radiolabeled acetate, malonate, pyruvate, citrate, or glucose added to cultures were not incorporated into cellular phospholipid fatty acids indicating that these exogenously supplied putative precursors were not utilized for fatty acid synthesis by Paramecium. Radiolabel from octanoate or hexanoate appeared in fatty acyl groups of phospholipids, possibly by partial beta-oxidation and reincorporation of the label. Under oleate-free conditions in which cultures do not grow, radiolabel from these shorter chain SFA were beta-oxidized and preferentially used for the formation of arachidonate, the major end-product of fatty acid synthesis in Paramecium. Cerulenin inhibited culture growth apparently by inhibiting de novo fatty acid synthesis. Cerulenin-treated cells did not incorporate radioactivity from [1-14C]octanoate into esterified palmitate. However, total saponifiable phospholipid fatty acids, including SFA, per cell increased under these conditions.  相似文献   

4.
The interrelationship between ethylene and growth regulators in the senescence of romaine lettuce (Lactuca sativa L.) leaves was studied. Gibberellic acid (GA3), kinetin, and 3-indoleacetic acid (IAA) retarded chlorophyll loss from leaf discs which were floated on hormone solutions. Abscisic acid (ABA) and ethephon enhanced chlorophyll loss and antagonized the senescence-retarding effect of GA3 and kinetin. A high concentration of IAA (10–4 M) caused accelerated chlorophyll loss, whereas a similar concentration of kinetin neither retarded nor promoted chlorophyll loss. The ineffectiveness of IAA and kinetin at their supraoptimal concentrations in retarding leaf senescence was related to increased production of ethylene induced in the treated leaf discs. GA3 was the most effective in retarding chlorophyll loss and did not stimulate ethylene production at all. The senescence-enhancing effect of ABA was not mediated by ethylene. However, the moderately increased production of ethylene, induced by relatively high concentrations of ABA, could act synergistically with the latter to accelerate chlorophyll loss. It is proposed that the effectiveness of exogenously applied hormones, both in enhancing and retarding senescence, is greatly affected by the endogenous ethylene concentration of the treated plant tissue.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 2571-E, 1988 series.  相似文献   

5.
樟科植物中脂肪酸成分的分布   总被引:1,自引:0,他引:1  
本文报道了樟科11个属49种种子油和‘种果肉油的脂肪酸成分。其中樟族和木姜子族的各属种(滇新樟除外)种子油脂肪酸成分以 C_(10)、C_(12)和 C_(14)饱和或烯酸为主。而厚壳桂属、润楠和楠属种子油脂肪酸成分主要为棕榈酸、油酸和亚油酸。山苍子、天目木姜子、大果山胡椒、山橙、红脉钓樟、鸭公树和锈叶新木姜子种子油中的 C_(10)、C_(12)和 C_(14)烯酸经分离鉴定均是顺式Δ~4烯酸。  相似文献   

6.
Hans Kleinig  Bodo Liedvogel 《Planta》1979,144(5):473-477
The coronae of Narcissus pseudonarcissus flowers incorporated [1-14C]acetate almost exclusively into the fatty acid moieties of glycerolipids. After a 4 h incubation, the newly synthesized acids were: stearate plus palmitate (50%); oleate (17%); linoleate (32%); and linolenate (0.5%). Phosphatidylcholine and diacylglycerol were the principal labelled lipids. In pulse experiments these acids were further desaturated, with time, to an appreciable extent and, concurrently, transferred essentially from phosphatidylcholine to diacylglycerol, diacylgalactosylglycerol, and diacylgalabiosylglycerol. The labelling of diacylgalactosylglycerol and diacylgalabiosylglycerol paralleled the appearance of linolenate. The distribution of labelled acids in phosphatidylcholine, diacylgalactosylglycerol, and diacylgalabiosylglycerol was very different. The results were compared with those obtained in vitro with isolated coronae chromoplasts and discussed in relation to current schemes of fatty acid and glycerolipid synthesis in plant cells.  相似文献   

7.
Fatty acid biosynthesis by isolated plastids has been examined in relation to chloroplast development and differentiation in leaves of maize plants grown in light for 7 days. Biosynthesis of fatty acids from acetate by proplastids prepared from the basal regions of the leaf was low and mainly palmitate was synthesized. The greatly increased utilization of acetate for fatty acid biosynthesis as the plastids increased in size was due to an increased synthesis of oleate. The maximum synthesis of total fatty acids and monoenoic fatty acids was obtained in chloroplasts prepared from leaf tissue 6–8 cm from the base of the plant where granal formation was most active. Fully-developed chloroplasts prepared from distal regions of the leaf were less active in fatty acid biosynthesis. Maize chloroplasts failed to synthesize fatty acids when isolated by methods commonly used to prepare active spinach chloroplasts. The method of isolation which included a density gradient gave a high proportion of Class I chloroplasts from maize leaves and incorporated up to about 10% of the acetate used. Biosynthesis of unsaturated fatty acids, especially with chloroplasts prepared from the most mature tissue, was increased by the addition of both mitochondrial and microsomal fractions. Increases in polyunsaturated fatty acids were also obtained but the proportions in the newly-synthesized fatty acids were well below the endogenous levels. Monoenoic synthesis was greatly stimulated by increasing the pH in the range 7·0–8·0 and also the highest proportions of unsaturated fatty acids were obtained at short incubation times.  相似文献   

8.
The rapid senescence of the etiolated leaves of dark-grown barley seedlings in the dark is accompanied by the loss of those lipids associated with the plastids. The linolenate content of the plastid glycerolipids rapidly decreased whereas it tended to increase in the extraplastidic phospholipids. Kinetin treatment slowed down the loss of the plastid lipids and their constituent fatty acids. The hormone treatment brought about increased linolenate, particularly in phosphatidylcholine and monogalactosyldiacylglycerol. The senescing leaf attempts to adapt to ageing by increased membrane synthesis and/or membrane repair. Kinetin appears to control the sequential desaturation of oleate to linolenate.  相似文献   

9.
1. The synthesis and secretion of glycerolipids by monolayer cultures of rat hepatocytes was measured by using radioactive choline, glycerol and fatty acids and by measuring the concentration of triacylglycerols in the cells. 2. The incorporation of glycerol into triacylglycerol and the accumulation of this lipid in hepatocytes showed little specificity for fatty acids, except for eicosapentaenoate, which stimulated least. Oleate was more effective at stimulating triacylglycerol secretion than were palmitate, stearate, arachidonate and eicosapentaenoate. 3. Linoleate, linolenate, arachidonate and eicosapentaenoate stimulated the incorporation of glycerol and choline into phosphatidylcholine that was secreted into the medium. By contrast, palmitate and stearate produced relatively high incorporations into the phosphatidylcholine that remained in the cells. 4. The incorporation of glycerol and choline into lysophosphatidylcholine in the medium was stimulated 2-3-fold by all of the unsaturated fatty acids tested, whereas palmitate and stearate failed to stimulate if the acids were added separately. When 1 mM-stearate was added with 1 mM-linoleate, the incorporation of linoleate into lysophosphatidylcholine was about 4 times higher than that of stearate. 5. It is proposed that the secretion of lysophosphatidylcholine by the liver could provide a transport system for choline and essential unsaturated fatty acids to other organs.  相似文献   

10.
本文研究了激动素对韭菜离体叶片衰老的影响与活性氧代谢的关系。结果表明,在暗诱导衰老过程中抗坏血酸、谷胱甘肽含量和超氧物岐化酶、过氧化氢酶活性均呈下降趋势。激动素在延缓衰老的同时,明显抑制了抗坏血酸、谷胱甘肽含量和超氧物岐化酶、过氧化氢酶活性的下降以及膜脂过氧化产物丙二醛的积累。证明激动素延缓衰老的作用是通过调节活性氧代谢来实现的。  相似文献   

11.
Lipid transformations in greening and senescing leaf tissue   总被引:1,自引:0,他引:1       下载免费PDF全文
Analyses were made of chlorophyll a and b and fatty acids (18:3, 18:2, 18:1, 18:0, 16:2, 16:1, and 16:0) of greening and senescing leaf tissue. Those dark-grown tissues given a prior treatment of red, far red, or red followed by far red light showed similar increases in chlorophylls and linolenate (18:3) when exposed to continuous white light. In contrast, green barley (Hordeum vulgare L.) leaves placed in the dark lost chlorophylls and fatty acids, especially 18:3. Senescing cocklebur (Xanthium strumarium L.) leaf tissue showed a decline in chlorophyll and fatty acids, especially again 18:3. Abscisic acid, but not sucrose, accelerated these senescent changes. Radioactive acetate incorporation into the galacto-lipids and phospholipids of senescing cocklebur leaf tissue increased and then the radioactivity of the lipids decreased in senescent tissues.  相似文献   

12.
Lipoxygenase (EC 1.13.11.12) (LOX), a ubiquitous plant enzyme which catalyzes the hydroperoxidation of unsaturated fatty acids (PUFA), plays an important role during the course of leaf and cotyledonary senescence. In the present study, senescence related changes in chlorophyll and protein content and lipoxygenase activity have been examined in peanut cotyledons. The chlorophyll content of the cotyledons increased from the 2nd to 8th day followed by a steady decline. In contrast, protein content of peanut cotyledons decreased continuously during senescence. Lipoxygenase activity, on the other hand, increased in early stages of germination followed by a decrease in the later course of senescing peanut cotyledons. Analysis of the product profile, the lipoxygenase with arachidonic acid as the substrate on HPLC, has shown a single peak comigrating with standard 15-Hydroperoxyeicosatetraenoic acid. The results on peanut cotyledonary 15-lipoxygenase activity in relation to abscisic acid and kinetin are discussed.  相似文献   

13.
Summary The minimum requirement for unsaturated fatty acids was investigated inE. coli using a mutant impaired in the synthesis of vaccenic acid. Exogenously supplied palmitic acid was incorporated by this mutant which led to a reduction in the proportion of cellular unsaturated fatty acids. Growth was impaired as the level of saturated fatty acids approached 76% at 37°C and 60% at 30°C. The basis of this growth inhibition was investigated. Most transport systems and enzymes examined remained active in palmitate-grown cells although the specific activities of glutamate uptake and succinic dehydrogenase were depressed 50%. Fluorescent probes of membrane organization indicated that fluidity decreased with palmitate incorportation. Temperature scans with parinaric acid indicated that rigid lipid domains exist in palmitategrown cells at their respective growth temperature. Freeze-fracture electron microscopy confirmed the presence of phase separations (particle-free areas) in palmitate-grown cells held at their growth temperature prior to quenching. The extent of this separation into particle-free and particle-enriched domains was equivalent to that induced by a shift to 0°C in control cells. The incorporation of palmitate increased nucleotide leakage over threefold. The cytoplasmic enzyme -galactosidase was released into the surrounding medium as the concentration of unsaturated fatty acid approached the minimum for a particular growth temperature. Lysis was observed as a decrease in turbidity when cells which had been grown with palmitate were shifted to a lower growth temperature. From these results we propose that leakage and partial lysis are the major factors contributing to the apparent decrease in growth rate caused by the excessive incorporation of palmitate. Further, we propose that membrane integrity may determine the minimum requirement for unsaturated fatty acids inE. coli rather than a specific effect on membrane transport and/or membrane-bound enzymes.  相似文献   

14.
Abstract— The proportions of esterified cholesterol and phosphatidyl ethanolamine in lipids of cerebrospinal fluid (CSF) from children were found to be lower than the corresponcling values for adult CSF. The fatty acid patterns of the cholesterol ester, triglyceride + non-esterified fatty acids and phospholipid fractions all displayed low proportions of linoleate; palmitate and oleate were the principal acids present. The fatty acid composition of these lipid classes for CSF derived from children was similar to that from adult subjects. Degradation of CSF lecithin by snake-venom phospholipase A2 revealed the saturated acids to be located predominantly in the 1-position with the unsaturated ones mainly in the 2-position.  相似文献   

15.
1. The patterns of incorporation of (14)C into glycerolipid fatty acids of developing maize leaf lamina from supplied [1-(14)C]acetate and from (14)CO(2) during steady-state photosynthesis were similar. Oleate of phosphatidylcholine and palmitate of phosphatidylglycerol attained linear rates of labelling more rapidly than did other fatty acids, particularly the linoleate and linolenate of monogalactosyl diacylglycerol. 2. After the transfer of lamina from labelled to unlabelled acetate, there was a decrease in labelled oleate and linoleate of phosphatidylcholine and a concomitant increase in the amount of radioactivity in the linoleate and linolenate of monogalactosyl diacylglycerol. 3. The rapidly labelled phospholipids, phosphatidylcholine and phosphatidylglycerol, were shown by differential and sucrose-density-gradient centrifugation to be associated with different organelles, the former being mainly in a low-density membrane fraction, probably microsomal, and the latter mainly in chloroplasts. 4. During a 48h period after supplying spinach leaves with [(14)C]acetate, radioactivity was lost from the oleate of phosphatidylcholine present in fractions sedimented at 12000g and 105000g, and accumulated in the linolenate of monogalactosyl diacylglycerol of the chloroplast. 5. It is proposed that the phosphatidylcholine of some non-plastid membranes is intimately involved in the process of oleate desaturation and that this lipid serves as a donor of unsaturated C(18) fatty acids to other lipids, principally monogalactosyl diacylglycerol, of the chloroplasts.  相似文献   

16.
Bolton  P.  Harwood  J. L. 《Planta》1978,138(3):223-228
Fatty acid synthesis was studied in successive leaf sections from the base to the tip of developing barley (Hordeum vulgare L.), maize (Zea mays L.), rye grass (Lolium perenne L.) and wheat (Triticum aestivium L.) leaves. The basal regions of the leaves had the lowest rates of fatty acid synthesis and accumulated small amounts of very long chain fatty acids. Fatty acid synthesis was highest in the middle leaf sections in all four plants. Linolenic acid synthesis from [1-14C]acetate was highest in the distal leaf sections of rye grass. The labelling of the fatty acids of individual lipids of rye grass was examined and it was found that [14C]linolenic acid was highest in the galactolipids. Synthesis of this acid in the galactolipids was most active in leaf segment C. Only traces of [14C]linolenic acid were ever found in phosphatidylcholine and it is concluded that this phospholipid cannot serve as a substrate for linoleic acid desaturation in rye grass. The synthesis of fatty acids was sensitive to arsenite, fluoride and the herbicide EPTC. The latter was only inhibitory towards those leaf segments which made very long chain fatty acids. Formation of fatty acids from [1-14C]acetate was also studied in chloroplasts prepared from successive leaf sections of rye grass. Chloroplasts isolated from the middle leaf sections had the highest activity. Palmitic and oleic acids were the main fatty acid products in all chloroplast preparations. Linolenic acid synthesis was highest in chlorplasts isolated from the distal leaf sections of rye grass.  相似文献   

17.
The changes in the amount, rale of synthesis and the nucleotide composition of different RNA fractions in excised barley leaves floated on water or kinetin (10 mg/l) in the dark were examined. In excised leaves floated on water all nucleic acid components declined and these declines were retarded by kinetin. Barley leaves floated on water showed a stimulation of 32P incorporation into various RNA fractions within 48 hours followed by a decline after 96–144 hours. The leaves floated on kinetin, however, showed an even higher incorporation of 32P into UNA by 48 hours which remained at a comparatively higher level throughout the experiment. In spite of the above changes in RNA synthesis significant differences in the 32P sucrose gradient profiles or in the 32P nucleotide composition of UNA from water and kinetin floated leaves were not noted. The results of this study show that important changes in nucleic acid metabolism occur during the early stages of leaf senescence and that alterations in nucleic acid metabolism during senescence and during kinetin treatment may involve quantitative and only subtle qualitative changes.  相似文献   

18.
Slices of rabbit cerebral cortex, from the foetal stage to the adult have been used to compare lipid synthesis from fatty acids synthesized de novo from [U-14C]glucose and [1-14C]acetate, with lipid synthesis from exogenous albumin-bound [1-14C]palmitate. Incorporation into cellular lipid has been determined in terms of DNA, protein, wet wt. of tissue and wet weight of whole brain. On a wet wt. basis, maximum incorporation of glucose carbon into lipid occurred in the foetal brain while lipid synthesis from acetate and palmitate was maximum at 4–14 days after birth. Glucose and acetate were incorporated into a diversity of lipids (with increasing amounts of phosphatidylcholine synthesized during maturation), while palmitate was incorporated into the free fatty acid and triglyceride fractions. A greater proportion of acetate was incorporated into fatty acids of chain-length longer than C16 compared with the incorporation of palmitate. However, on a molar basis de novo synthesized and exogenous palmitate were elongated, desaturated and incorporated into phospholipids at a similar rate, while exogenous palmitate was incorporated to a greater extent than de nova synthesized fatty acid into the triglyceride fraction. This difference in metabolism may be due to the different size of the non-esterified fatty acid pool in the two situations. At the period of their most active formation, the very long-chain fatty acids may be synthesized from a pool of the C18 series of fatty acids (saturated and monoenoic) not in equilibrium with the bulk of C18 acids in cerebral lipids. This could be a pool of acyl groups derived from ethanolamine phospholipids.  相似文献   

19.
Tomosugi M  Ichihara K  Saito K 《Planta》2006,223(2):349-358
The major fatty acid component of castor (Ricinus communis L.) oil is ricinoleic acid (12-hydroxy-cis-9-octadecenoic acid), and unsaturated hydroxy acid accounts for >85% of the total fatty acids in triacylglycerol (TAG). TAG had a higher ricinoleate content at position 2 than at positions 1 and 3. Although lysophosphatidic acid (LPA) acyltransferase (EC 2.3.1.51), which catalyzes acylation of LPA at position 2, was expected to utilize ricinoleoyl-CoA preferentially over other fatty acyl-CoAs, no activity was found for ricinoleoyl-CoA in vitro at concentrations at which other unsaturated acyl-CoAs were incorporated rapidly. However, activity for ricinoleoyl-CoA appeared with addition of polyamines (putrescine, spermidine, and spermine), while polyamines decreased the rates of incorporation of other acyl-CoAs into position 2. The order of effect of polyamines on LPA acyltransferase activity was spermine > spermidine >> putrescine. At concentrations of spermine and spermidine of >0.1 mM, ricinoleoyl-CoA served as an effective substrate for LPA acyltransferase reaction. The concentrations of spermine and spermidine in the developing seeds were estimated at ∼0.09 and ∼0.63 mM, respectively. These stimulatory effects for incorporation of ricinoleate were specific to polyamines, but basic amino acids were ineffective as cations. In contrast, in microsomes from safflower seeds that do not contain ricinoleic acid, spermine and spermidine stimulated the LPA acyltransferase reaction for all acyl-CoAs tested, including ricinoleoyl-CoA. Although the fatty acid composition of TAG depends on both acyl-CoA composition in the cell and substrate specificity of acyltransferases, castor bean polyamines are crucial for incorporation of ricinoleate into position 2 of LPA. Polyamines are essential for synthesis of 2-ricinoleoyl phosphatidic acid in developing castor seeds.  相似文献   

20.
Role of cytokinins in carnation flower senescence   总被引:2,自引:2,他引:0       下载免费PDF全文
Stem and leaf tissues of carnation (Dianthus caryophyllus) plants appear to contain a natural antisenescence factor since removal of most of these tissues from cut carnation flowers hastened their senescence. However, kinetin (5-10 μg/ml) significantly delayed senescence of flowers with stem and leaf tissues removed. In addition, the life span of cut flowers with intact (30-cm) stems was increased with kinetin treatment. Peak ethylene production by presenescent flowers was reduced 55% or more with kinetin treatment and was delayed by 1 day. Kinetin-treated flowers were less responsive to applied ethylene (100 μl/l for 3 hours) than untreated flowers. Possible natural roles of cytokinins in carnation flower senescence are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号