首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nearly mature axillary bud of Populus deltoides was embedded in epoxy and serially sectioned at 6 μm. Sectioning extended from the cataphyll tips to a level in the subtending internode about 6 mm below the bud base. Vascular development was followed through the serial microsections and the vascular system was mapped in its entirety from initiation of the original bud traces to termination of the last recognizable leaf trace beneath the bud apex. Each vascular trace was identified as to its origin, its termination within a foliar organ, and its relation to other traces comprising the bud vascular cylinder. Analysis of these data confirmed the procambial patterns found in Part I of this study. Two original bud traces that diverged from the central trace of the axillant leaf gave rise to two pairs of scale traces in quick succession, and these scale traces become the progenitors of all subsequent vascular traces that were perpetuated within the bud. Just before the bud vascular system separated from that of the stem, a third pair of scale traces diverged from the original bud traces; the latter then receded toward the stem to eventually merge with its vasculature. The third pair of scale traces produced a horizontal vascular connection between stem and bud before terminating in the adaxial cataphyll. The vascular system at first conformed with a ½ vascular phyllotaxy when the original bud traces were initiated, progressed through a ⅓ vascular phyllotaxy in the scale trace system, and terminated at the time of sampling with a ⅖ vascular phyllotaxy in the foliage leaf primordia.  相似文献   

2.
LARSON  P. R. 《Annals of botany》1980,46(6):757-769
The procambial system of Populus deltoides Bartr. ex Marsh.plants progressed from phyllotaxy in the cotyledon stage throughthe phyllotactic orders 3/2;5/13. The nodal position at whicheach of these phyllotactic transitions occured was determinedby anatomical analyses; they were found to be remarkably consistentin a large population of young plants. The data were used todiagrammatically reconstruct the procambial system of a typical16 leaf plant. Because all plant parts grew continuously anduninterruptedly, it was not possible to verify the positionsof the phyllotactic transitions by morphological criteria. However,several measured parameters (the number and lengths of primordiawithin the terminal bud, the plastochron interval, and the numberof leaf traces with birefringent xylem elcments) attained constantvalues following establishment of the 5/13 phyllotaxy, suggestingthis to be the stable phyllotactic order for the species. Althoughbud size continued to increase in plants exhibiting 5/13 phyllotaxy,it could be accounted for by the increased number and size ofbasipetal subsidiary bundles in the procambial leaf traces.It was suggested that these phyllotactic transitions in theprocambial system are programmed in the plant to occur at ratherspecific stages of ontogeny. The process is mediated by theolder leaves and it is therefore modified by plant vigour. Locationof the primary-secondary vascular transition zone was also relatedto the order of phyllotaxy. It advanced acropetally in the stemin close association with leaf maturation, but this associationwas further influenced by plant vigour. Populus deltoides Bartr. ex Marsh., cottonwood, vascular anatomy, phyllotaxis, leaf growth, xylem  相似文献   

3.
The apical 22 cm of a dormant, first-year sprout of Populus grandidentata was sectioned serially, and the primary and secondary xylem systems were studied microscopically and graphically reconstructed. A total of 15 nodes was present on the mature stem and 14 foliar primordia in the dormant bud. The vascular traces in the lower portion of the mature stem conformed to a 2/5 phyllotaxy while those of the upper portion and within the dormant bud conformed to a 3/8 phyllotaxy. The 2/5 to 3/8 phyllotactic transition occurred in an extremely precise and systematic two-step pattern: (1) The lateral traces shifted to a new point of origin on the parent central trace, and (2) three new central traces were initiated in sequence by divergences from left-traces. Metaxylem, when followed downward, conformed to the arrangement of the procambial trace system only within one orthostichy. Below this point, the metaxylem components of lateral traces physically separated from those of the protoxylem and continued downward on a new course. Metaxylem vessels produced by the trace cambium originated from a postulated vessel-generating center at the stem-petiole junction. Each metaxylem vessel developing basipetally through the primary body was continuous with a secondary vessel developing basipetally in the secondary body. Because secondary development closed the vascular cylinder, vessels originating from developing leaves or primordia situated at higher levels in the shoot were displaced radially outward when they entered the secondary xyelm. The distribution of vessels in the secondary xylem can therefore be accounted for by a knowledge of the production and distribution of metaxylem vessels in the primary body.  相似文献   

4.
Primary shoot vasculature has been studied for 31 species of Pereskioideae and Opuntioideae from serial transections and stained, decorticated shoot tips. The eustele of all species is interpreted as consisting of sympodia, one for each orthostichy. A sympodium is composed of a vertically continuous axial bundle from which arise leaf- and areole-trace bundles and, in many species, accessory bundles and bridges between axial bundles. Provascular strands for leaf traces and axial bundles are initiated acropetally and continuously within the residual meristem, but differentiation of procambium for areole traces and bridges is delayed until primordia form on axillary buds. The differentiation patterns of primary phloem and xylem are those typically found in other dicotyledons. In all species vascular supply for a leaf is principally derived from only one procambial bundle that arises from axial bundles, whereas traces from two axial bundles supply the axillary bud. Two structural patterns of primary vasculature are found in the species examined. In four species of Pereskia that possess the least specialized wood in the stem, primary vascular systems are open, and leaf traces are mostly multipartite, arising from one axial bundle. In other Pereskioideae and Opuntioideae the vascular systems are closed through a bridge at each node that arises near the base of each leaf, and leaf traces are generally bipartite or single. Vascular systems in Pereskiopsis are relatively simple as compared to the complex vasculature of Opuntia, in which a vascular network is formed at each node by fusion of two sympodia and a leaf trace with areole traces and numerous accessory bundles. Variations in nodal structure correlate well with differences in external shoot morphology. Previous reports that cacti have typical 2-trace, unilacunar nodal structure are probably incorrect. Pereskioideae and Opuntioideae have no additional medullary or cortical systems.  相似文献   

5.
An actively growing cottonwood bud was embedded in epon-araldite and serially sectioned at 2 μm. The sections were analyzed microscopically with the optical shuttle system of Zimmermann and Tomlinson, and all data were quantitatively recorded relative to the apex and to leaf plastochron index (LPI). Analysis of the sections revealed an acropetally developing procambial system organized according to a precise phyllotaxy. Six procambial strands could be recognized and followed long before the leaf primordia that they would enter were evident at the apex. Origin of these strands coincided with developmental events both in the parent trace and its primordium and in the antecedent leaf on the same orthostichy. Once a primordium and its trace attained a certain stage of development, trace bundles began to develop basipetally from the primordium base. These trace bundles appeared to be the earliest progenitors of wood formation in cottonwood. It was concluded that the concept of residual meristem and its corollary, the hypothesis that acropetally developing procambial strands determine the inception sties of new primordia, apply to the cottonwood apex.  相似文献   

6.
The origin of polystichy in the maize ear and central tassel spike continues to challenge our understanding of evolution in this important crop species. In this paper we tested the hypothesis that the change in phyllotaxy occurs in the region of husk leaf production before the transition to reproductive growth. Young ear or presumptive ear primordia were dissected to examine the transition from distichous husk leaves below the ear through spiral phyllotaxy to the polystichous arrangement of spikelet pair primordia in the young ear. Serial transverse sections were used to document the thickness of successive disks of insertion of lateral primordia and to reconstruct the path of procambial differentiation. The transition in phyllotaxy, though variable, typically occurs in the vegetative zone and is associated with periodic heterogeneity in the thickness of leaf bases and a delay in the development of waves of procambial differentiation into the base of the young ear.  相似文献   

7.
The anatomy and organization of the stem vascular system was analyzed in representative taxa of Nymphaea (subgenera Anecphya, Lotos, and Brachyceras). The stem vascular system consists of a series of concentric axial stem bundles from which traces to lateral organs depart. At the node each leaf is supplied with a median and two lateral leaf traces. At the same level a root trace supplies vascular tissue to adventitious roots borne on the leaf base. Flowers and vegetative buds occupy leaf sites in the genetic spiral and in the parastichies seen on the stem exterior. Certain leaves have flowers related to them spatially and by vascular association. Flowers (and similarly vegetative buds) are vascularized by a peduncle trace that arises from a peduncle fusion bundle located in the pith. The peduncle fusion bundle is formed by the fusion of vascular tissue derived from axial stem bundles that supply traces to certain leaves. The organization of the vascular system in the investigated taxa of Nymphaea is unique to angiosperms but similar to other subgenera of Nymphaea.  相似文献   

8.
木立芦荟叶的发育解剖学研究   总被引:5,自引:0,他引:5  
应用植物解剖学方法研究了木立芦荟(Aloe arborescens Mill.)叶的发育过程。研究结果表明,叶原基在发育早期其形态是不对称的,内部为同形细胞组成,但很快分化成原表皮,原形成层束和基本分生组织。以后,原表皮发育成表皮,位于原表皮下的2-5层基本分生组织细胞发民同化薄壁组织,而位于中央的基本分生组织细胞则发育成储水薄壁组织,原形成层束发育成维管束。维管束由维管束鞘、木质部、韧皮部和大型薄壁细胞组成。大型薄壁细胞起源于原形成层束,位于韧皮部内,其发育迟于筛管、伴胞,为芦荟属植物叶的结构特征。  相似文献   

9.
In species of Casuarina with multileaved whorls, each stem vascular bundle divides radially into two at the site of a leaf trace separation, and the same two bundles rejoin acropetally to where the trace supplies a leaf. Such divisions are divisions of a single vascular bundle, and the rejoining of bundles forms a single bundle. Proposals that the extant primary vascular systems of dicotyledons may have been derived as in conifers are incorrect in so far as Casuarina is concerned, or the system has evolved beyond that so far proposed for dicotyledons. Reasons are offered, however, for considering that fernlike leaf gaps are not present. Leaf traces supply leaves at the first nodes distal to their origins. The ways by which an increase or decrease of stem bundles occur are described. Phyllotactic patterns range from helical (rare) to whorled. In the embryo, where leaves occur decussately, of certain species with multileaved whorls, and in the shoot apices of species with tetramerous whorls, slight differences in the levels of leaf attachments and the bending of leaf traces indicate the probable evolution of extant whorled phyllotaxies from one or more helical arrangements. Stages in the evolution are suggested. The leaves in most species with multileaved whorls are in true whorls. The original periderm of branchlets lies internally to the internodal traces and chlorenchyma, but is otherwise external to the vascular system. It is concluded that each leaf originates at its level of separation from the axis despite several structural features suggesting that the leaf bases have become congenitally adnate to the stem.  相似文献   

10.
The odd-pinnate leaves of Polyscias quilfoylei have a sheathing leaf base that completely encircles the stem. At each node, many traces depart the vascular cylinder and traverse an obliquely upward course through the leaf base before aggregating in the rachis. Lateral traces diverge from parent traces in the stem vasculature at variable times relative to the leaf they serve, from variable positions in the vascular cylinder and from parent traces of variable ages. The stem vasculature is formed by the coalescing of leaf traces from as many as five leaves. All bundles departing the vascular cylinder at a node to serve a leaf are true leaf traces originating independently in the stem. Leaf traces develop acropetally from their positions of origin on parent traces. Primordial leaves are first served by the median trace and later by lateral traces. Many traces were recognized in the internodes subtending embryonic leaves, but they could not be related either to a specific leaf or to a specific position within a leaf. Because these traces had not yet achieved contact with a primordial leaf site, they were assumed to be in the process of developing acropetally at the time of sampling. Observations suggest that the multiple traces in this species might perform a similar function of integrating the vascular cylinder that subsidiary bundles perform in certain uni- and trilacunar species.  相似文献   

11.
Seedling morphology and vascular course inTribulus terrestris were studied. This species has no erect stem, but four buds appear immediately above the cotyledonary node and grow into prostrate shoots. They were determined to be the main axis of the seedling and the axillary branches of the earliest three foliage leaves, which arise very close to each other. All the leaves, including cotyledons, are vascularized with four bundles among which two are related to a single median gap. When two leaves are attached to one node, lateral traces to the opposed leaves are derived by bifurcation of a single bundle at either side of the stem. In the shoot with a series of alternate leaves, the median pair of traces to every other leaf are found on the same orthostichy. In the branch of which the first node bears no flower but an anisophyllous pair of leaves, the smaller leaf at the node was proven to be the first prophyll because its median traces are superposed by those to the leaf at the next node.  相似文献   

12.
The ontogeny of the major venation in the lamina of Populus deltoides Bartr. leaves was investigated in relation to the development of original procambial bundles, subsidiary bundles, and their derivatives. Serial sections and clearings were used to show that the midrib region is a composite structure consisting of several independent vascular bundles, each of which eventually diverges into the lamina to become a secondary vein. The sequence of events in the ontogeny of major secondary veins is: (1) an original procambial strand develops acropetally and becomes the precursor of the first vascular bundle of the midrib region of the lamina, (2) ground tissue at the forefront of acropetally developing subsidiary procambial bundles differentiates in a wavelike continuum; meristematic regions precede the acropetally developing procambial bundles, (3) discrete subsidiary bundles differentiate in the meristematic regions as they advance acropetally, (4) subsidiary bundles diverge obliquely in the lamina margin giving rise to the secondary veins in a basipetal fashion, and (5) subsequent differentiation and maturation of the secondary veins occurs within the lamina. The original procambial bundles and first-formed subsidiary bundles become the secondary veins of the uppermost portions of the lamina, the next-formed subsidiary bundles become the secondary veins of the middle portions of the lamina, and the last-formed subsidiary bundles become the secondary veins of the lowermost portion of the lamina.  相似文献   

13.
Six species of Cabomba have been examined although the anatomy of the vegetative axes is based on the study of only C. caroliniana and C. palaeformis. A plant consists of an erect short shoot with decussate leaves which bears axillary flowering shoots and rhizomes. A rhizome bears decussate leaves and may also form axillary flowering shoots or turn upward and become a new short shoot. The phyllotaxies of the flowering shoots are proximately decussate or ternate (C. piauhyensis). The flowering shoots with decussate phyllotaxy change to 1/3 phyllotaxy distally; they bear axillary flowers proximally, and extra-axillary flowers distally. Flowering shoots with ternate phyllotaxy do not change distally but each produces first axillary and then extra-axillary flowers. Decussate vegetative axes and flowering shoots have four vascular bundles; ternate vegetative axes and flowering shoots have six vascular bundles, distantly paired into two or three vascular bundle-pairs, respectively. An elliptical vascular plexus occurs at each node. Each leaf receives one bundle-pair from one trace and each flower three bundle-pairs. A two-level receptacular vascular plexus occurs in flowers; the proximal, larger portion provides traces to perianth and stamens and the distal, smaller portion becomes carpellary traces. Each of the three sepals typically receives five branch traces from a basal principal trace, and each of the three petals receives, typically, three branch traces from a basal principal trace. Sepals and petals generally occur in a single, basally connate whorl. Each stamen receives one trace. Each stamen of three-stamen flowers is opposite a petal; each stamen of six-stamen flowers is aligned with an interval between a petal and adjacent sepal. Each staminal trace, which is just above the principal petal trace, in a three-petal flower, is frequently adnate to the latter trace. Each carpel receives one principal trace from the distal, small extension of the receptacular plexus, and each principal trace becomes three conventional veins of a carpel. Ovules may be borne directly over one of the veins or in any position between veins and are supplied by branches of the nearest vein or nearest two veins. All traces, ovular supply veins and the proximal portions of all veins are amphicribral. The several anatomical and morphological differences in vegetative axes and flowers between Cabomba and Brasenia suggest a greater taxonomic distance between the two genera than commonly supposed. It is suggested that extra-axillary flowers in 1/3 helical and ternate flowering shoots of Cabomba might be advantageous in preventing anthesis of flowers beneath peltate leaves. The aberrant position might be the initial evolutionary step toward what, in other nymphaeaceous genera, has shifted each flower to an adjacent helix. It is proposed that the zigzag stem accompanying the trigonal and sympodial flowering shoots may offer greater stability and floatability in water than the monopodial form. Several suggestions are offered for the variability of ovular positions: 1) the variability is a vestige of former laminar placentation in conduplicate carpels; 2) it is a vestige of a primitive condition antedating the current close association of ovules with ventral carpellary veins; 3) it is an early stage of evolution which might have terminated in laminar placentation and cantharophily, but which was replaced by a trend toward myophily.  相似文献   

14.
Parke , Robert V. (Colorado State U., Fort Collins.) Initial vascularization of the vegetative shoot, of Abies concolor. Amer. Jour. Bot. 50(5): 464–469. Illus. 1963.—In the dormant winter bud, the future vascular system of the shoot exists as a rather ill-defined system of procambial strands, which extends acropetally from the scale traces through a plate of thick-walled, deeply staining cells, the crown, and into the axis and the numerous foliar primordia making up the telescoped shoot. Each foliar primordium receives a single procambial strand or leaf trace. The procambial strands differentiate acropetally. No differentiated vascular tissue was observed in the dormant shoot. As the shoot elongates in the spring, vascular differentiation progresses at a rapid rate. In the leaf traces, protophloem differentiates acropetally. The protoxylem, which appears first in the axial region of the trace, differentiates acropetally into the foliar primordium and basipetally into the stem. The first-formed phloem elements are short-lived. They are nucleate and without sieve areas. In the protoxylem, the first-formed tracheids are mostly of the annular or spiral-thickened type.  相似文献   

15.
夏侧金盏花幼苗初生维管系统的解剖学研究   总被引:2,自引:2,他引:0  
王立军  谷安根 《植物研究》1993,13(3):257-261
夏侧金盏花(Adonis estivalis L.)为毛莨科(Ranuncula-ceae)侧金盏花属(Adonis)植物。其幼苗可明显地分为上胚轴苗区、子叶节区和下胚轴根区。幼苗以子叶节区为中心,往上其子叶节区中部和上部为子叶节—茎过渡区;向下其下胚轴为子叶节—根过渡区。目前对毛莨科某些属幼苗初生维管系统的个体发育研究已有一些报道。但夏侧金盏花幼苗的子叶节—茎过渡区的转变与已报道的其他属均不同。主要表现为其子叶节区下部的中始式二原型双肩状单中柱,到达子叶节区中部,其后生木质部弦向发育成二唇形外韧维管束雏型,在中柱中央出现薄壁组织,进一步发育则形成髓;再往上,即子叶节区上部,便一分为多个内始式的外韧维管束雏型,直接形成上胚轴(茎)的真中柱。此研究为再一次验证子叶节区理论的正确性与进一步揭示被子植物初生维管系统的演化规律积累一份新资料。  相似文献   

16.
以药源植物穿龙薯蓣种子为外植体,构建优化种子消毒时间以及愈伤组织、不定芽和生根诱导等激素浓度、组成和配比体系,并比较组培苗的叶片、缠绕茎和根状茎等营养器官与实生苗在解剖结构上的差异,初步建立以种子为外植体的再生体系.结果表明:(1)外植体采用2%NaClO消毒15 min和18 min为宜;愈伤组织诱导培养基为MS+1...  相似文献   

17.
Development of the Populus leaf is presented as a model system to illustrate the sequence of events that occur during the sink to source transition. A Populus leaf is served by three leaf traces, each of which consists of an original procambial trace bundle that differentiates acropetally and continuously from more mature procambium in the stem and a complement of subsidiary bundles that differentiates bidirectionally from a leaf basal meristem. During development these subsidiary bundles maintain continuity through the meristematic region of the node. The basipetally developing subsidiary bunles form phloem bridges that serve to integrate adjacent leaf traces of the stem vasculature. Distal to the node the acropetally developing bundles from all three leaf traces are reoriented in a precise and orderly sequence to form tiers of petiolar bundles. These tiers of bundles extend into the midrib where bundles diverge at intervals as the major lateral veins. The dorsal-most tier of bundles extends to the lamina tip and each successive tier of bundles contributes to lateral veins situated more proximally in the lamina. Although the midrib and the major vein system differentiate acropetally in the lamina, they mature basipetally. Maturation of the mesophyll and other lamina tissues also mature basipetally. As a consequence of the basi-petal maturation process, the lamina tip matures very early and begins exporting photosynthates while the lamina base is still importing from other leaves. The transition of a leaf from sink to source status must therefore be considered as a progression of structural and functional events that occur in synchrony.  相似文献   

18.
The structural patterns of the primary vascular systems in some species of Leguminosae and Rosaceae have been determined by tracing the longitudinal course of the vascular bundles in terminal stem segments. These systems are interpreted as consisting of sympodia. Each sympodium is composed of an axial bundle which is continuous through the length of the segment and from which arise trace bundles that supply leaves and axillary buds. A compact arrangement of vascular bundles seems to correlate with the woody habit. Regardless of the degree of compactness of the primary vascular system, the structural identity of the individual sympodia is maintained. The total number of vascular bundles at a particular level is related to the number of axial bundles in the system, the number of traces per leaf and per axillary bud, and the number of internodes traversed by the traces prior to entering a lateral appendage. Shrubs and trees have more vascular bundles than herbs. Data from this study and the literature indicate that the vascular system is predominantly of the open type in dicotyledonous plants which have helically arranged leaves and, further, that in such plants with a 3-trace, trilacunar nodal structure, the number of sympodia coincides with the number of orthostichies (which is also the denominator of the phyllotactic fraction). In open systems leaf gaps cannot be morphologically delimited. Because of the resemblance of the open type of angiosperm vascular system to that of certain gymnosperms, previously interpreted to have evolved from a protostele, we suggest that the eustele of angiosperms is homologous with the stele of gymnosperms. We believe, also, that angiosperms, like gymnosperms, are probably not characterized by leaf gaps of filicinean type. We provide, furthermore, a rationale for the view that the axial bundle of a sympodium is a cauline structure.  相似文献   

19.
Seedlings of Brassica napus L. 2–11 days after germination were used. However, the most investigation was concentrated on the 6-day old seedlings. The primary root has a diarch protostele, the two groups of primary phloem alternate with the primary xylem. At higher level, the metaxylem is gradually differentiated in a lateral direction. Being coincident with this changes of the metaxylem, the groups of phloem cell are extended. The stele of the lower hypocotyl is root-like and has no pith. In the middle hypocotyl, there is a further lateral differentiation of the metaxylem. At the higher level, four metaxylem arms appear and the groups of phloem are extended circumferentially to form two crescent shaped sectors. In the upper hypocotyl below 0.2 cm of the cotyledonary node, a central pith has been formed which separates the differentiating primary xylem into two distinct units. At a slightly higher level, each primary phloem divides into two small groups, at this time, each xylem unit and the two adjacent groups of phloem constitute a cotyledonary trace. The foliar traces of the first two foliage leaves appear in the inter-cotyledonary plane between the vascular elements of the cotyledonary traces. At this level, the vascular tissue of the hypocotyl forms a siphonostele made up of two cotyledonary traces and the two foliage leaves, where the root-stem transition has nearly been completed, while the endarch condition is not attained in the hypocotyl. At incresing distances from the cotyledonary node upwards, in the cotyledonary petiole, the protoxylem occupies a more and more adaxial position and the metaxylem a more and more abaxial direction and, thus, the endarch condition is attained. The primary system of the root, hypocotyl, and cotyledons forms a complete circular system, the plumular vascular elements are directly connected by secondary elements formed by the cambium in the region of the hypocotyl. As for the results mentioned above, the authers have not detected that the primary xylem has a rotation of 180˚, as described by Van Tieghem.  相似文献   

20.
Procambium was initially isolated near the insertions of lemma and stamen primordia in the grass Anthoxanthum. The palea was initiated before its procambium. The acropetal, continuous differentiation of procambium involved in the siting of leaves on shoots of many other megaphyllous plants, does not occur in the rachilla of this grass. A portion of the vascular system of the fertile floret of Anthoxanthum became connected with the vascular system of the rest of the spikelet by basipetal differentiation of the procambial trace of the fertile lemma. A core of residual meristem persisted in the fertile floret above the procambial trace to the fertile lemma. Vascular continuity between the procambial trace to the fertile lemma and the procambial traces of the stamens was achieved by the differentiation of procambium from this core of residual meristem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号