首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
南瓜(Cucurbita moschata)再生率较低, 为建立高效的南瓜再生体系, 以南瓜子叶为外植体, 进行35组不同激素浓度的不定芽诱导研究。结果表明, 南瓜再生受培养基中激素浓度和配比的影响, 适宜浓度6-苄氨基腺嘌呤(6-BA)能有效促进不定芽形成; 单独使用脱落酸(ABA)诱导使南瓜子叶发黄, 但与6-BA组合使用可显著提高外植体的再生能力, 1.0 mg∙L -16-BA与0.5 mg∙L -1ABA组合南瓜芽再生率高达90.26%。将不定芽置于MS培养基中进行生根培养, 再生苗移栽易成活。从子叶接种到苗再生约需70天。  相似文献   

2.
南瓜(Cucurbita moschata)再生率较低, 为建立高效的南瓜再生体系, 以南瓜子叶为外植体, 进行35组不同激素浓度的不定芽诱导研究。结果表明, 南瓜再生受培养基中激素浓度和配比的影响, 适宜浓度6-苄氨基腺嘌呤(6-BA)能有效促进不定芽形成; 单独使用脱落酸(ABA)诱导使南瓜子叶发黄, 但与6-BA组合使用可显著提高外植体的再生能力, 1.0 mg?L -16-BA与0.5 mg?L -1ABA组合南瓜芽再生率高达90.26%。将不定芽置于MS培养基中进行生根培养, 再生苗移栽易成活。从子叶接种到苗再生约需70天。  相似文献   

3.
影响决明无菌苗子叶原生质体分离和培养因素的研究   总被引:1,自引:0,他引:1  
以决明(Cassia obtusi folia)无菌苗子叶为材料,对酶组合、无菌苗日龄,植物激素组合和培养方法对其原生质体的分离和培养的影响进行了研究。结果表明:用3%的纤维素酶和0.2%Pectinase Y-23的酶组合处理决明无菌苗子叶块8小时可以高效分离出有活力的原生质体;约14日龄的决明无菌苗子叶比较适合于原生质体的分离;适当浓度的2,4-D 有利于原生质体的分离。促进原生质体分裂的理想的植物激素组合为0.4 mg/L 2,4-D,1.0 mg/L NAA and 0.1 mg/L KT;漂浮培养法最有利于原生质体的分裂和发育。找出了适合于决明无菌苗子叶原生质体的分离和培养的酶组合、植物激索组合、有效培养方法和决明无菌苗子叶日龄。这为有效地从决明无菌苗子叶原生质体再生植株奠定了基础。  相似文献   

4.
1. Experiments with the seeds of Grand Rapids lettuce showedthat the germination induced by gibberellic acid or by red lightis strongly accelerated by kinetin, although the latter itselfcan promote the germination in the dark only slightly. The reversiblelight reactions of the phytochrome system interact with kinetintreatment just as effectively as with water-imbibed controls.The site of primary action of red light is not altered by kinetintreatment. Kinetin does not modify the water uptake of the seedsfor at least 8 hours. 2. Kinetin was found to inhibit the growth of the hypocotyland root of the seed, but to promote very markedly the expansionof the cotyledons. This effect was observed not only with cotyledonsin intact seeds but also with isolated cotyledons. The expansionof kinetin-treated cotyledons is further promoted by red light,but not by far-red, as is also the case with germination itself. 3. A number of purine derivatives which have been reported topromote germination also cause expansion of isolated cotyledons. 4. Gibberellic acid promotes both hypocotyl elongation and cotyledonexpansion in the dark, but this effect does not interact withthe phytochrome system. The site of action of gibberellic acidprobably lies in the axis. 5. It is concluded, therefore, that the site of kinetin actionis in the cotyledons, whose expansion helps to break the seed-coatwhen light or gibberellin has contributed the primary stimulus. 1 Present address: Johnson Foundation for Medical Physics, Universityof Pennsylvania, Philadelphia, Pa. (Received January 16, 1963; )  相似文献   

5.
以辣椒子叶为外植体,比较不同浓度BA和IAA激素组合对辣椒再生芽诱导的差异,利用筛选出的高效芽诱导培养基为基础,研究了赤霉素、芽诱导时间、培养基有机成分、不同激素组合和品种等因素对辣椒不定芽伸长的影响。结果表明:不同基因型辣椒子叶再生能力不同,BA3.0mg.L-1 IAA0.5mg.L-1的激素配比对不定芽诱导频率最高;不定芽的伸长百分率随着GA3浓度的增加而增加,GA3的适合浓度为1.0~2.0mg.L-1;不定芽诱导时间对不定芽的伸长有一定的影响,诱导21d的不定芽,其伸长频率明显高于诱导14d的不定芽;B5有机成分在辣椒不定芽的伸长中效果优于MS有机成分;激素组合对不定芽伸长有一定的影响,Zeatin GA3激素组合对伸长效果最好,BA IAA GA3伸长效果较好,BA PAA(苯乙酸,phenylaceticacid) GA3伸长效果次之;不同品种辣椒不定芽的伸长能力有一定差异,楚风和苏椒五号再生芽伸长能力最佳。与IAA和NAA相比,IBA对再生芽生根效果较好。  相似文献   

6.
7.
8.
以辣椒子叶为外植体,比较不同浓度BA和IAA激素组合对辣椒再生芽诱导的差异,利用筛选出的高效芽诱导培养基为基础,研究了赤霉素、芽诱导时间、培养基有机成分、不同激素组合和品种等因素对辣椒不定芽伸长的影响。结果表明:不同基因型辣椒子叶再生能力不同,BA3.0mg·L-1+IAA0.5mg·L-1的激素配比对不定芽诱导频率最高;不定芽的伸长百分率随着GA3浓度的增加而增加,GA3的适合浓度为1.0~2.0mg·L-1;不定芽诱导时间对不定芽的伸长有一定的影响,诱导21d的不定芽,其伸长频率明显高于诱导14d的不定芽;B5有机成分在辣椒不定芽的伸长中效果优于MS有机成分;激素组合对不定芽伸长有一定的影响,Zeatin+GA3激素组合对伸长效果最好,BA+IAA+GA3伸长效果较好,BA+PAA(苯乙酸,phenylaceticacid)+GA3伸长效果次之;不同品种辣椒不定芽的伸长能力有一定差异,楚风和苏椒五号再生芽伸长能力最佳。与IAA和NAA相比,IBA对再生芽生根效果较好。  相似文献   

9.
The influence of light intensity and phytochrome on the uptake of 14C-kinetin (6-furfurylamino-[8- 14C]-purine) by the plant and the translocation of the phytochrome between the roots, the hypocotyl and the cotyledons were investigated with radish seedlings ( Raphanus sativus L. cv. Saxa Treib) grown in the dark or under white light of high (20,000 lux, 90 W m−2) or low intensity (2,000 lux, 14 W m−2). The highest uptake of labelled kinetin was found in plants grown in continuous darkness. The total uptake of kinetin was decreased by strong light and to a finally higher extent by weak light. Under white light most of the kinetin accumulated in the root, whereas in the dark an enhanced translocation of the phytohormone into the cotyledons was observed. In etiolated radish seedlings, light acting on phytochrome (daily 5 min red or far red light pulses) decreased the translocation of 14C-kinetin into the cotyledons. Under far red light a pronounced uptake of the phytohormone into the roots was found. The data are discussed with regard to the interaction of light and phytohormones on plant development.  相似文献   

10.
cDNA cloning and differential gene expression of three catalases in pumpkin   总被引:5,自引:0,他引:5  
Three cDNA clones (cat1, cat2, cat3) for catalase (EC 1.11.1.6) were isolated from a cDNA library of pumpkin (Cucurbita sp.) cotyledons. In northern blotting using the cDNA-specific probe, the cat1 mRNA levels were high in seeds and early seedlings of pumpkin. The expression pattern of cat1 was similar to that of malate synthase, a characteristic enzyme of glyoxysomes. These data suggest that cat1 might encode a catalase associated with glyoxysomal functions. Furthermore, immunocytochemical analysis using cat1-specific anti-peptide antibody directly showed that cat1 encoding catalase is located in glyoxysomes. The cat2 mRNA was present at high levels in green cotyledons, mature leaf, stem and green hypocotyl of light-grown pumpkin plant, and correlated with chlorophyll content in the tissues. The tissue-specific expression of cat2 had a strong resemblance to that of glycolate oxidase, a characteristic enzyme of leaf peroxisomes. During germination of pumpkin seeds, cat2 mRNA levels increased in response to light, although the increase in cat2 mRNA by light was less than that of glycolate oxidase. cat3 mRNA was abundant in green cotyledons, etiolated cotyledons, green hypocotyl and root, but not in young leaf. cat3 mRNA expression was not dependent on light, but was constitutive in mature tissues. Interestingly, cat1 mRNA levels increased during senescence of pumpkin cotyledons, whereas cat2 and cat3 mRNAs disappeared during senescence, suggesting that cat1 encoding catalase may be involved in the senescence process. Thus, in pumpkin, three catalase genes are differentially regulated and may exhibit different functions.  相似文献   

11.
The effects of salicylic acid (SA) on mitochondrial respiration and generation of membrane potential across the inner membrane of mitochondria isolated from stored taproots of sugar beet (Beta vulgaris L.) and etiolated seedling cotyledons of yellow lupine (Lupinus luteus L.) were studied. When malate was oxidized in the presence of glutamate, low SA concentrations (lower than 1.0 mM) exerted predominantly uncoupling action on the respiration of taproot mitochondria: they activated the rate of oxygen uptake in State 4 (in the absence of ADP) and did not affect oxidation in State 3 (in the presence of ADP). In contrast, in lupine cotyledon mitochondria these SA concentrations inhibited oxygen uptake in the presence of ADP and much weaker activated substrate oxidation in State 4. Thus, SA (0.5 mM) reduced the respiratory control ratio according to Chance (RCR) by 25% in the taproots and 35% in cotyledons. When the concentration of phytohormone was increased (above 1.0 mM), malate oxidation in State 3 was inhibited and in State 4 — activated independently of the plant material used. In this case, the values of RCR and ADP/O were reduced by 50–60%. The effect of high SA concentrations (2 mM and higher) on malate oxidation depended on the duration of incubation and had a biphasic pattern: the initial activation of oxygen uptake was later replaced by its inhibition. The parallel studying the SA effect on the generation of membrane potential (ΔΨ) at malate oxidation in the mitochondria of beet taproots and lupine cotyledons showed that ΔΨ dissipation was observed because of SA uncoupling and inhibiting action on respiration. The degree of ΔΨ dissipation depended on the phytohormone concentration and duration on mitochondria treatment, especially at its high concentrations. In general, a correlation was found between the effects of SA on mitochondrial respiration and ΔΨ values in the coupling membranes. Furthermore, these results show that the responses of mitochondria to SA were determined not only by its concentration but also by treatment duration and evidently by the sensitivity to the phytohormone of mitochondria isolated from different plant tissues.  相似文献   

12.
Investigations have been made on the changes in the levels ofprotochlorophyll, chlorophyll a and chlorophyll b in relationto the kinetin induced expansion of isolated pumpkin cotyledonsin the presence and absence of chloramphenicol. It has been shown that rise in pigment level keeps pace withexpansion growth of the cotyledons. Kinetin markedly promotes the synthesis of protochlorphyll withoutmuch affecting the rate of its photoreduction to chlorophyll. Chloramphenicol strongly inhibits the development of both chlorophylla and b. The inhibition seems to be due to its interferenceboth with the synthesis of protochlorophyll and its subsequentconversion to chlorophyll. The inhibitory effect of chloramphenicol on the formation ofchlorophyll a is greater than on that of chlorophyll b, suggestingthereby the probability of divergent pathways for the formationof the two chlorophylls. (Received December 21, 1966; )  相似文献   

13.
The data concerning the plant sex regulation by phytohormones are presented. Functioning of signaling pathways regulating floral development and sex expression, including those with phytohormone involvement, are considered. The role of phytohormones in the functioning of systems and mechanisms of sex regulation is analyzed. The examples of sex reversion by plant treatment with phytohormones are presented. It is demonstrated that many genes determining sex encode proteins involved in the phytohormone metabolism. The significance of phytohormone investigation for the understanding of molecular mechanisms of plant sex regulation is discussed.  相似文献   

14.
Recent studies have shown that application of phytohormones to shoots of Alyssum murale increased biomass production but did not increase Ni shoot concentration. Increased biomass and Ni phytoextraction efficiency is useful to achieve economically viable phytomining. The objective of this study was to evaluate the effect of two types of phytohormones on the Ni phytoextraction capacity of four Alyssum species. Two different commercially available phytohormones (Cytokin® and Promalin®) based on cytokinins and/or gibberellins were applied on shoot biomass of four Ni hyperaccumulating Alyssum species (A. corsicum, A. malacitanum, A. murale, and A. pintodasilvae). Cytokin was applied in two concentrations and promalin in one concentration. The application of phytohormones had no clear positive effect on biomass production, Ni accumulation and Ni phytoextraction efficiency in the studied Alyssum species. A. malacitanum was the only species in which a significantly negative effect of these treatments was observed (in Ni uptake). A slightly positive response to promalin treatment was observed in the biomass production and Ni phytoextraction efficiency of A. corsicum. Although this effect was not significant it does indicate a potential application of these approaches to improve phytoextraction ability. Further studies will be needed to identify the most adequate phytohormone treatment as well as the appropriate concentrations and application times.  相似文献   

15.
Phytohormones play important roles in plant growth and development, and polyploids are thought to be an important method for plant breeding. However, the relationship between ploidy and phytohormone is still unclear. In this study, barley at three ploidy levels were produced by microspore culture. Therefore, we further analyzed the phytohormone content in the shoots and roots of the three kinds of barley materials to study the effect of ploidy on phytohormones accumulation and distribution. The results showed that Abscisic acid (ABA), gibberellin (GA), jasmonic acid (JA), auxin (IAA), salicylic acid (SA) and cytokinin (CTK) were successfully determined in shoots and roots using LC-MS (liquid chromatography mass spectrometry). By comparing the shoots of the haploid and diploid plants, it was found that the distribution trend of the six phytohormones was consistent, and another consistent trend was found in the roots of the diploid and tetraploid plants. In addition, we further analyzed the shoot/root ratio of the different phytohormones to identify the potential differences for haploid, diploid and tetraploid. Here, the relationship between ploidy and phytohormone we provided would provide new insights into understanding the new phenotypes that occur in polyploid species.  相似文献   

16.
不同因子对山药愈伤组织诱导的影响   总被引:16,自引:0,他引:16  
研究了基因型、外植体、植物激素和光暗等因子对山药愈伤组织诱导的影响。结果表明 :(1)不同基因型山药均能诱导形成愈伤组织 ,但出愈率不同 ,其排列顺序是 :“4 7号”山药 >铁棍山药 >太谷山药。 (2 )不同外植体在同一种培养基上的诱导率存在差异。同一外植体在不同植物激素浓度配比中 ,诱导率也不同。叶片、茎段、零余子的最佳激素配比均为 6 - BA2 (mg/ L,以下单位同 ) +NAA2 ,诱导率分别为 53.3%、 6 5.6 %、 10 0 % ,茎尖的最佳激素配比为 6 - BA2 +NAA0 .2 ,诱导率为 93.3%。 (3)植物激素在愈伤组织诱导过程中起关键的作用。细胞分裂素与生长素组合使用优于单一激素。二者的浓度配比不同 ,出愈率也不同。 (4 )光暗条件对不同外植体愈伤组织诱导的影响不同。暗培养有利于零余子的诱导 ,而光培养则有利于叶片的诱导。  相似文献   

17.
Two different cDNA clones, pMCPN60-1 and pMCPN60-2, encoding the mitochondrial homologues of chaperonin 60 (Cpn60) were isolated from a cDNA library of germinating pumpkin cotyledons by use of mixtures of synthetic oligonucleotides based on the N-terminal amino acid sequence of the protein. Determination of the complete nucleotide sequences of the two cDNA revealed that pMCPN60-1 and pMCPN60-2 each contain one open reading frame that encodes a protein of 575 amino acids with molecular masses of 61052 Da and 61127 Da, respectively. The deduced amino acid sequences of the two polypeptides include a 32-residue N-terminal putative mitochondrial presequence attached to the mature polypeptides, and they are 95.3% identical. From a comparison of deduced amino acid sequences with other Cpn60, it appears that the mature polypeptides of pumpkin mitochondrial Cpn60 are 44-59% identical to the other Cpn60, namely, GroEL of Escherichia coli, the 60-kDa heat-shock protein (Hsp60) of mitochondria in the yeast Saccharomyces cerevisiae, P1 protein of mammalian mitochondria and the Ribulose-1,5-bisphosphate carboxylase/oxygenase subunit-binding proteins alpha and beta of plastids in higher plants. Genomic Southern-blot analysis identified at least two copies of the gene for mitochondrial Cpn60 in the pumpkin genome. The levels of mRNA for mitochondrial Cpn60 in cotyledons, hooks and hypocotyls of pumpkin seedlings increased in response to heat stress, as deduced from Northern-blot analysis, indicating that pumpkin mitochondrial Cpn60 is a heat-induced stress protein.  相似文献   

18.
Tulip (Tulipa gesneriana L.) is a bulbous plant species that requires a period of low temperature for proper growth and flowering. The mechanism of sensing the low temperature period is unknown. The study presented in this paper shows that the essential developmental change in tulip bulbs during cold treatment is an increase in sensitivity to the phytohormone auxin. This is demonstrated using a model system consisting of isolated internodes grown on tissue culture medium containing different combinations of the phytohormones auxin and gibberellin. Using mathematical modelling, equations taken from the field of enzyme kinetics were fitted through the data. By doing so it became apparent that longer periods of low temperature resulted in an increased maximum response at a lower auxin concentration. Besides the cold treatment, gibberellin also enhances the response to auxin in the internodes in this in vitro system. A working model describing the relationship between the cold requirement, gibberellin action and auxin sensitivity is put forward. Possible analogies with other cold-requiring processes such as vernalization and stratification, and the interaction of auxin and gibberellin in the stalk elongation process in other plant species are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号