首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
On the upper surface of some specimens of the lichen Lobaria cf. crosa (Eschw.) Nyl. there are shrub-like growths which have a morphology similar to that of a free-living fruticose lichen, Polychidium umhausense (Auersw.) Henss., and contain a cyanophyte phycobiont, Nostoc. A few growths also contain scattered colonies of a chlorophyte phycobiont, in which case the lichen tissue locally assumes the foliose form characteristic of the parent Lobaria thallus. The differentiation of dorsiventral lichen cortices and the formation of a lax medulla and distinct algal layer are correlated with the presence of the green phycobiont. The lichen substances atranorin, gyrophoric acid, and 4-0-methylgyrophoric acid occur in both, the foliose L. erosa thallus and the fruticose tissue. It is suggested that the fruticose structures are erumpent cephalodia which are derived from the outgrowth of internal, cephalodia and should not be considered, to be epiphytic colonies of the lichen Polychidium.  相似文献   

2.
Ahmadjian , V. (Clark U., Worcester, Mass.) Investigations on lichen synthesis. Amer. Jour. Bot. 49(3): 277–283. Illus. 1962.—Separated fungal and algal components of the lichen, Acarospora fuscata (Nyl.) Am., were recombined under controlled laboratory conditions to form structures comparable to those of the naturally occurring lichen thallus. The primary condition for this artificial synthesis was the absence of organic and inorganic supplements to the agar substrate. Thus, in effect, the mycobiont was forced into union with the phycobiont. It was demonstrated that both alga and fungus derived benefit from the lichenized association.  相似文献   

3.

Background and Aims

Cyanolichens are usually stated to be bipartite (mycobiont plus cyanobacterial photobiont). Analyses revealed green algal carbohydrates in supposedly cyanobacterial lichens (in the genera Pseudocyphellaria, Sticta and Peltigera). Investigations were carried out to determine if both cyanobacteria and green algae were present in these lichens and, if so, what were their roles.

Methods

The types of photobiont present were determined by light and fluorescence microscopy. Small carbohydrates were analysed to detect the presence of green algal metabolites. Thalli were treated with selected strengths of Zn2+ solutions that stop cyanobacterial but not green algal photosynthesis. CO2 exchange was measured before and after treatment to determine the contribution of each photobiont to total thallus photosynthesis. Heterocyst frequencies were determined to clarify whether the cyanobacteria were modified for increased nitrogen fixation (high heterocyst frequencies) or were normal, vegetative cells.

Key Results

Several cyanobacterial lichens had green algae present in the photosynthetic layer of the thallus. The presence of the green algal transfer carbohydrate (ribitol) and the incomplete inhibition of thallus photosynthesis upon treatment with Zn2+ solutions showed that both photobionts contributed to the photosynthesis of the lichen thallus. Low heterocyst frequencies showed that, despite the presence of adjacent green algae, the cyanobacteria were not altered to increase nitrogen fixation.

Conclusions

These cyanobacterial lichens are a tripartite lichen symbiont combination in which the mycobiont has two primarily photosynthetic photobionts, ‘co-primary photobionts’, a cyanobacterium (dominant) and a green alga. This demonstrates high flexibility in photobiont choice by the mycobiont in the Peltigerales. Overall thallus appearance does not change whether one or two photobionts are present in the cyanobacterial thallus. This suggests that, if there is a photobiont effect on thallus structure, it is not specific to one or the other photobiont.  相似文献   

4.
The green algaTrebouxia aggregata (Archibald)Gärtner (Chlorellales) and the procaryotic blue-green alga (cyanobacterium)Gloeocapsa sanguinea (C. Agardh)Kütz. emend.Jaag (Chroococcales) are reported to be the phycobionts inEuopsis granatina (Sommerf.)Nyl. (Lichinaceae). The ultrastructure of the two organisms, studied in the lichen thallus, is described.
Frau Prof. Dr.Elisabeth Tschermak-Woess zu ihrem 70. Geburtstag gewidmet.  相似文献   

5.
Summary An investigation was made of the vegetative thallus of the lichen Peltigera polydactyla. Using a modified embedding technique it was shown that the ultrastructure of the mycobiont was not radically different from that of nonlichenized Discomycetes, and that the ultrastructure of the phycobiont was like that of the blue-green alga Nostoc. In addition to what were considered healthy blue-green algal cells other cells were present which obviously were breaking down. Well defined heterocysts were also present. No haustoria were found in the thallus.  相似文献   

6.
Summary The effect of high light levels on the two partners of a Pseudocyphellaria phycosymbiodeme (Pseudocyphellaria rufovirescens, with a green phycobiont, and P. murrayi with a blue-green phycobiont), which naturally occurs in deep shade, was examined and found to differ between the partners. Green algae can rapidly accumulate zeaxanthin, which we suggest is involved in photoprotection, through the xanthophyll cycle. Blue-green algae lack this cycle, and P. murrayi did not contain or form any zeaxanthin under our experimental conditions. Upon illumination, the thallus lobes with green algae exhibited strong nonphotochemical fluorescence quenching indicative of the radiationless dissipation of excess excitation energy, whereas thallus lobes with blue-green algae did not possess this capacity. The reduction state of photosystem II was higher by approximately 30% at each PFD beyond the light-limiting range in the blue-green algal partner compared with the green algal partner. Furthermore, a 2-h exposure to high light levels resulted in large reductions in the efficiency of photosynthetic energy conversion which were rapidly reversible in the lichen with green algae, but were long-lasting in the lichen with blue-green algae. Changes in fluorescence characteristics indicated that the cause of the depression in photosynthetic energy conversion was a reversible increase in radiationless dissipation in the green algal partner and photoinhibitory damage in the blue-green algal partner. These findings represent further evidence that zeaxanthin is involved in the photoprotective dissipation of excessive excitation energy in photosynthetic membranes. The difference in the capacity for rapid zeaxanthin formation between the two partners of the Pseudocyphellaria phycosymbiodeme may be important in the habitat selection of the two species when living separate from one another.Abbreviations F O yield of instantaneous fluorescence - F M maximum yield of fluorescence induced by pulses of saturating light - F V yield of variable fluorescence (F M -FO) induced by pulses of saturating light - PFD photon flux density (400–700 nm) - PS II photosystem II - q NP coefficient for nonphotochemical fluorescence quenching - q P (or 1-q P ) coefficient for photochemical fluorescence quenching  相似文献   

7.
Heavily lichenized Physolinum monile (De Wildem.) Printz from damp limestone walls in a dimly lit cave located in Missouri was studied from fresh collections and specimens fixed in situ, and from cultures. The narrow (7-13 μm wide thallus), profusely branched plant consisted of filaments of the alga P. monile ensheathed by clear fungal cells (5-8 in a single layer) that adhered tightly to each other and completely covered the algal cells. Cells of P. monile filaments were uninucleate, each containing a single massive chloroplast with numerous tightly packed thylakoids and lipid droplets and surrounded by a thin layer of cytoplasm. No plasmodesmata occurred in the cellulosic crosswalls between adjacent cells. The ensheathing fungal cells contained concentric bodies, produced haustoria that penetrated the algal cells, and developed hyphae (the tips of which formed clusters of conidia). Ensheathing fungal cells were well situated and constructed to concentrate light on the algal cells. Colonies of blue-green algae were firmly attached to the surface of the fungal cells. The association was slow growing but frequently produced and released aplanospores from the algal cells. Aplanospores were single (not attached to each other) with smooth walls or united in groups of two or more. Structures resembling lichen soredia, composed of aplanospore-like cells attached to one or more comdia-like cells, commonly occurred among the lichenized Physolinum filaments. The single chloroplast that occupies most of the cell's volume, the numerous, tightly packed thylakoids, and light focusing by ensheathing fungus cells may enable the organism to survive in a dimly lit environment. Because the filamentous alga reproduces only by aplanospores, we propose resurrection of the genus Physolinum. The lichenized Physolinum somewhat resembles the lichens Coenogonium moniliforme Tuck. and Cystocoleus Thwaites.  相似文献   

8.
The green algal lichen Placopsis pycnotheca was identified at Pia and Marinelli glaciers (Isla Grande of Tierra de Fuego, Chile) as a primary colonizer of bare soil in areas close to the front of the glacier or around small ponds created after glacier retreatment. Electron microscopy study showed that P. pycnotheca formed a thick hypothallus within which hyphae and their extracellular polymeric substances bind numerous soil particles. This structure augments water holding and soil stabilization capacities and constitutes an early stage in soil crust development. In addition, numerous cephalodia are formed within the hypothallus and subsequently develop upwards towards the thallus surface, sometimes before the formation of squamules with green algae. These anatomical and morphological strategies together with physiological properties such as the long photosynthetic activity period (measured in the laboratory) help explain its pioneering role as a colonizer and its apparently high growth rate.  相似文献   

9.
Domestication of algae by lichen‐forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations ( Goward 1992 ). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont ‘selection’ by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction ( Ahmadjian & Jacobs 1981 ) only after the interaction has been initiated. The theory of ecological guilds ( Rikkinen et al. 2002 ) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens ( Rikkinen et al. 2002 ), other studies propose models to explain variation in symbiont combinations in green algal lichens ( Ohmura et al. 2006 ; Piercey‐Normore 2006 ; Yahr et al. 2006 ) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & ?kaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose lichens in the genus Lepraria. Altitude has been suggested to influence species distributions in a wide range of taxonomic groups. This is one of the first studies to illustrate an ecological guild, mainly for exposure to rainfall (ombrophiles and ombrophobes), with green algal lichens.  相似文献   

10.
The lichen Peltigera aphthosa consists of a fungus and green alga (Coccomyxa) in the main thallus and of a Nostoc located in superficial packets, intermixed with fungus, called cephalodia. Dark nitrogenase activity (acetylene reduction) of lichen discs (of alga, fungus and Nostoc) and of excised cephalodia was sustained at higher rates and for longer than was the dark nitrogenase activity of the isolated Nostoc growing exponentially. Dark nitrogenase activity of the symbiotic Nostoc was supported by the catabolism of polyglucose accumulated in the ligh and which in darkness served to supply ATP and reductant. The decrease in glucose content of the cephalodia paralleled the decline in dark nitrogenase activity in the presence of CO2; in the absence of CO2 dark nitrogenase activity declined faster although the rate of glucose loss was similar in the presence and absence of CO2. Dark CO2 fixation, which after 30 min in darkness represented 17 and 20% of the light rates of discs and cephalodia, respectively, also facilitated dark nitrogenase activity. The isolated Nostoc, the Coccomyxa and the excised fungus all fixed CO2 in the dark; in the lichen most dark CO2 fixation was probably due to the fungus. Kinetic studies using discs or cephalodia showed highest initial incorporation of 14CO2 in the dark in to oxaloacetate, aspartate, malate and fumarate; incorporation in to alanine and citrulline was low; incorporation in to sugar phosphates, phosphoglyceric acid and sugar alcohols was not significant. Substantial activities of the enzymes phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and carbamoyl-phosphate synthase (EC 2.7.2.5 and 2.7.2.9) were detected but the activities of PEP carboxykinase (EC 4.1.1.49) and PEP carboxyphosphotransferase (EC 4.1.1.38) were negligible. In the dark nitrogenase activity by the cephalodia, but not by the free-living Nostoc, declined more rapidly in the absence than in the presence of CO2 in the gas phase. Exogenous NH 4 + inhibited nitrogenase activity by cephalodia in the dark especially in the absence of CO2 but had no effect in the light. The overall data suggest that in the lichen dark CO2 fixation by the fungus may provide carbon skeletons which accept NH 4 + released by the cyanobacterium and that in the absence of CO2, NH 4 + directly, or indirectly via a mechanism which involves glutamine synthetase, inhibits nitrogenase activity.Abbreviations CP carbamoyl phosphate - EDTA ethylenedi-amine tetraacetic acid - PEP phosphoenolpyruvate - RuBP ribulose 1,5 bisphosphate  相似文献   

11.
Relationships between growth, nitrogen and concentration of unique biont components were investigated for the tripartite lichens Nephroma arcticum (L.) Torss. and Peltigera aphthosa (L.) Willd. Nitrogen availability was manipulated during 4 summer months by removing cephalodia and their associated N2 fixation activity, or by weekly irrigation with NH4NO3. Chlorophyll and ribulose 1·5‐biphosphate carboxylase/oxygenase (Rubisco), and chitin and ergosterol were used as photobiont and mycobiont markers, respectively. Nitrogen concentrations were similar in older and newer parts of the same thallus, varying between 2 and 5 g m?2, with P. aphthosa having higher concentrations than N. arcticum. Both chlorophyll (Chl a) and chitin were linearly correlated with thallus N, but N. arcticum invested more in fungal biomass and had lower Chl a concentrations in comparison with P. aphthosa at equal thallus N. During the 4 months, control and N‐fertilized thalli of N. arcticum increased in area by 0·2 m2 m?2 and P. aphthosa by 0·4 m2 m?2. Thallus expansion was significantly inhibited in samples without cephalodia, but there was no effect on lichen weight gain. Mean relative growth rate (RGR; mg g?1 d?1) was 3·8 for N. arcticum and 8·4 for P. aphthosa, when time (d) reflected the lichen wet periods. RGR was 2–3 times lower when based on the whole time, i.e. when including dry periods. The efficiency (e) of converting incident irradiance into lichen biomass was positively and linearly correlated with thallus Chl a concentration to the same extent in both species. The slower growth rates of N. arcticum, in comparison with P. aphthosa, could then be explained by their lower nitrogen and Chl a concentrations and a subsequently lower light energy conversion efficiency. Functional and dynamic aspects of resource allocation patterns of the two lichens are discussed in relation to the above findings.  相似文献   

12.
It is known from previous investigations that dry lichens with green algae are able to recover net photosynthesis through rehydration with water vapor, whereas all blue-green lichens tested so far lack this ability. The REM micrographs of the present study show that the green phycobionts (Trebouxia spec.) of Ramalina maciformis become turgid only after water vapor uptake. In contrast, the blue-green phycobionts (Nostoc spec.) of Peltigera rufescens do not differ in appearance from the dry state, even when the thallus has reached equilibrium with the water vapor-saturated air; they require liquid water for turgidity. It is hypothesized that, after humidity hydration, water content is not sufficient for reestablishment of a functioning osmotic cell system in the blue-green phycobiont.  相似文献   

13.
Summary The filter feeding blue tilapia, Tilapia aurea, was fed three different algae. Blue tilapia ingestion of two green algae, Chlamydomonas sp. and Ankistrodesmus falcatus and the filamentous blue-green alga, Anabaena flos-aquae, ranged from 21%–89% of the available cells. There were significant differences in the assimilation of algal carbon by the fish depending on the alga fed; A. flos-aquae was the easiest to assimilate (83%). The fish respired significantly less of the Chlamydomonas sp. ingested carbon (15%). The gross growth efficiency of fishes fed either green alga was not significantly different (22%–24%), but these efficiencies were significantly less than the gross growth efficiency of fish fed A. flos-aquae (46%). The carbon budgets for fish feeding on the green algae were similar to that constructed from the literature for a congener fed a mixed algae diet. However, the assimilation component of the budget for blue tilapia fed A. flos-aquae was 2 times greater than that of the literature budget.  相似文献   

14.
During the evolution of the lichen symbiosis, shifts from one main type of photobiont to another were infrequent (Miadlikowska et al. 2006 ) but some remarkable transitions from green algal to diazotrophic cyanobacterial photobionts are known from unrelated fungal clades within the ascomycetes. Cyanobacterial, including tripartite, associations (green algal and cyanobacterial photobionts in one lichen individual) facilitate these holobionts to live as C‐ and N‐autotrophs. Tripartite lichens are among the most productive lichens, which provide N‐fertilization to forest ecosystems under oceanic climates (Peltigerales) or deliver low, but ecologically significant N‐input into subarctic and alpine soil communities (Lecanorales, Agyriales). In this issue of Molecular Ecology, Schneider et al. (2016) mapped morphometric data against an eight‐locus fungal phylogeny across a transition of photobiont interactions from green algal to a tripartite association and used a phylogenetic comparative framework to explore the role of nitrogen‐fixing cyanobacteria in size differences in the Trapelia–Placopsis clade (Agyriales). Within the group of tripartite species, the volume of cyanobacteria‐containing structures (cephalodia) correlates with thallus thickness in both phylogenetic generalized least squares and phylogenetic generalized linear mixed‐effects analyses, and the fruiting body core volume increased ninefold. The authors conclude that cyanobacterial symbiosis appears to have enabled lichens to overcome size constraints in oligotrophic environments such as rock surfaces. The Trapelia–Placopsis clade analyzed by Schneider et al. (2016) is an exciting example of interactions between ecology, phylogeny and lichen biology including development – from thin crustose green algal microlichens to thick placodioid, tripartite macrolichens: as thick as three in a bed (Scott 1820 ).  相似文献   

15.
Variations in the morphology and physiology were noted when parts of the Peltigera aphthosa Willd. thallus differing in age were examined. The many small cephalodia on the growing apex of the lichen showed a lower heterocyst frequency (14%) than those on the rest of the thallus (21–22%), which was reflected in the nitrogenase activity. In contrast, highest levels of photosynthesis (14CO2 uptake and O2 evolution) were noted at the growing apex. while respiration rates were fairly stable over the thallus. The water-holding capacity was greatest in the midparts. Cephalodial biomass represented an average of 2.6% of total thallus biomass. while the number and size of these structures varied considerably. A minor part of the total carbon fixation (14CO2) and net oxygen evolution (O2 electrode) was performed by the blue-green phycobiont (Nostoc) in light. A rapid excretion of ammonia from isolated cephalodia was noticed, which together with a comparatively constant C:N ratio throughout the thallus indicated a rapid transport of metabolites facilitated by close physical contact (electron microscopy).  相似文献   

16.
Coenogonium interplexum Nyl. is a green to yellow-orange filamentous lichen commonly found on tree bark, rocks, and soil. The mycobiont is the ascomycetous fungus Coenogonium. The ultrastructure of the lichenized phycobiont, Trentepohlia, closely resembles that of the non-lichenized form, a filamentous subaerial green alga. The mycobiont has a typical fungal ultrastructure, and the cell wall sometimes appears thinner at points of contact with the phycobiont wall. Several branched fungal hyphae are usually randomly arranged around a Trentepohlia filament, and may in some cases completely ensheath the alga. Although no haustoria were observed, this relationship may still be termed a lichen since there is some modification of the alga and the lichen is structurally distinct from the two symbionts.  相似文献   

17.
Summary p-Nitrophenol (PNP),m-nitrophenol (MNP), 2,4-dinitrophenol (DNP) and catechol were tested for their effects on algal population in a soil and on pure cultures of two algae isolated from soil. Both PNP and MNP, even at 0.5 kg ha−1 level were toxic to the soil algae; high doses effected increase in toxicity. Inhibition of algae was relatively more with PNP compared to the other two nitrophenols. Catechol treatment up to 1.0 kg ha−1 led to a significant initial enhancement of algae with a subsequent far less toxic effect. The toxicity of the phenolic compounds towardChlorella vulgaris, a green alga andNostoc linckia, a blue-green alga, decreased in the order: MNP≧PNP>DNP>Catechol. However, algicidal or algistatic effect of the test chemicals was fairly more againstC. vulgaris, suggesting that the eukaryotic alga is highly sensitive to such soil pollutants compared to the prokaryotic alga.  相似文献   

18.
O. L. Lange  H. Pfanz  E. Kilian  A. Meyer 《Planta》1990,182(3):467-472
Earlier experiments (T.D. Brock 1975, Planta124, 13–23) addressed the question whether the fungus of the lichen thallus might enable the algal component to function when moisture stress is such that the algal component would be unable to function under free-living conditions. It was concluded that the liberated phycobiont in ground lichen thalli could not photosynthesize at water potentials as low as those at which the same alga could when it was present within the thallus. However, our experience with lichen photosynthesis has not substantiated this finding. Using instrumentation developed since the mid-1970's to measure photosynthesis and control humidity, we repeated Brock's experiments. When applying “matric” water stress (equilibrium with air of constant relative humidity) we were unable to confirm the earlier results for three lichen species including one of the species,Letharia vulpina, had also been used by Brock. We found no difference between the effects of low water potential on intact lichens and their liberated algal components (ground thallus material and isolated algae) and no indication that the fungal component of the lichen symbiosis protects the phycobiont from the adverse effects of desiccation once equilibrium conditions are reached. The photosynthetic apparatus of the phycobiont alone proved to be highly adapted to water stress as it possesses not only the capability of functioning under extremely low degrees of hydration but also of becoming reactivated solely by water vapor uptake.  相似文献   

19.
In contrast to the well-known blue-green algal containing lichens several green algal containing lichens, belonging to very different genera, show regular connections to free-living or ± lichenized blue-green algae, mainlyStigonema. Most of these lichens have squamulose thalli. This lichen-algal relationship, regarded as cyanotrophy, may be either facultative or obligate. Some of the species occur only on very poor, acidic rocks onStigonema, while they occur independent ofStigonema in high nutrient biotops. Obligate species cover the blue-green algae with hyphae and some of these species cover the algae so extensively that one can call these connections paracephalodia. — Two species and one variety are new to science from the mainly Himalayan genusBryonora. They occur in high elevations in Nepal and are cyanotrophic.Bryonora selenospora has thick, halfmoon-shaped to slightly twisted ascospores. The other two new taxa areB. reducta andB. rhypariza var.cyanotropha. There are several other cyanotrophic lichen taxa besides the ones described here. They will be introduced at a later occasion.
Frau Prof. Dr.Elisabeth Tschermak-Woess zu ihrem 70. Geburtstag gewidmet.  相似文献   

20.
Symbioses such as lichens are potentially threatened by drastic environmental changes. We used the lichen Peltigera aphthosa—a symbiosis between a fungus (mycobiont), a green alga (Coccomyxa sp.), and N2‐fixing cyanobacteria (Nostoc sp.)—as a model organism to assess the effects of environmental perturbations in nitrogen (N) or phosphorus (P). Growth, carbon (C) and N stable isotopes, CNP concentrations, and specific markers were analyzed in whole thalli and the partners after 4 months of daily nutrient additions in the field. Thallus N was 40% higher in N‐fertilized thalli, amino acid concentrations were twice as high, while fungal chitin but not ergosterol was lower. Nitrogen also resulted in a thicker algal layer and density, and a higher δ13C abundance in all three partners. Photosynthesis was not affected by either N or P. Thallus growth increased with light dose independent of fertilization regime. We conclude that faster algal growth compared to fungal lead to increased competition for light and CO2 among the Coccomyxa cells, and for C between alga and fungus, resulting in neither photosynthesis nor thallus growth responded to N fertilization. This suggests that the symbiotic lifestyle of lichens may prevent them from utilizing nutrient abundance to increase C assimilation and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号