首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The author studied the structure and functions of the saccus vasculosus of the Indian freshwater goby Glossogobius giuris (Ham.). The saccus is ovoid, is localized on the ventral surface of the brain and is lodged between the inferior lobes. It consist of several loculi lined with coronet cells and is bathed with blood from surrounding sinusoids. The coronet cells are variably shaped and have a conspicous central nucleus. It is suggested that the purpose of the saccus vasculosus is to act as a storage site for carbohydrates to the brain. By converting glycogen to acid mucopolysaccharides, the coronet cells are involved in glycogen metabolism.  相似文献   

2.
The effects of starvation and force-feeding on certain tissue and blood constituents were studied in the Northern pike, Esox lucius L. Starvation resulted in a reduction of liver and muscle glycogen and liver lipid. Blood glucose concentration and haematocrit were reduced, total plasma cholesterol levels were increased, while the levels of plasma free fatty acids (FFA), amio acid nitrogen and protein remained unaltered. No significant changes were observed in either muscle protein, muscle water or the response to amino acid loading during the starvation period.
The force-feeding of pike starved for 3 months resulted in liver lipid and muscle glycogen being increased to levels higher than those observed in freshly-captured fish. Liver glycogen, however, increased to values only slightly higher than those of starved animals. Furthermore, while force-feeding had little effect on plasma FFA or protein concentrations, blood glucose, plasma cholesterol and haematocrit returned to the levels found in freshlycaptured fish and those of amino acid nitrogen were higher.
The results indicate that pike are well adapted for periods of prolonged starvation and that hepatic and extra-hepatic lipid and glycogen stores serve for metabolic needs during food shortage, while body protein is conserved. The endocrine basis for these changes in the tissue and blood constituents is discussed.  相似文献   

3.
We recently observed that a 24-h fasted group of rats could run longer than an ad libitum fed control group before becoming exhausted. Because of the demonstrated importance of glycogen levels and free fatty acid availability during endurance exercise, we have investigated several parameters of carbohydrate and lipid metabolism in exercised and nonexercised rats that were either fed ad libitum or fasted for 24 h. A 24-h fast depleted liver glycogen, lowered plasma glucose concentration, decreased muscle glycogen levels, and increased free fatty acid and beta-hydroxybutyrate concentrations in plasma. During exercise the fasted group had lower plasma glucose concentration, higher plasma concentration of free fatty acids and beta-hydroxybutyrate, and a lower muscle glycogen depletion rate than did the ad libitum fed group. Since fasted rats were able to continue running even when plasma glucose had dropped to levels lower than those of fed-exhausted rats, it seems unlikely that blood glucose level, per se, is a factor in causing exhaustion. These results suggest that fasting increases fatty acid utilization during exercise and the resulting "glycogen sparing" effect may result in increased endurance.  相似文献   

4.
Carbohydrate nutrition before, during, and after exercise   总被引:1,自引:0,他引:1  
The role of dietary carbohydrates (CHO) in the resynthesis of muscle and liver glycogen after prolonged, exhaustive exercise has been clearly demonstrated. The mechanisms responsible for optimal glycogen storage are linked to the activation of glycogen synthetase by depletion of glycogen and the subsequent intake of CHO. Although diets rich in CHO may increase the muscle glycogen stores and enhance endurance exercise performance when consumed in the days before the activity, they also increase the rate of CHO oxidation and the use of muscle glycogen. When consumed in the last hour before exercise, the insulin stimulated-uptake of glucose from blood often results in hypoglycemia, greater dependence on muscle glycogen, and an earlier onset of exhaustion than when no CHO is fed. Ingesting CHO during exercise appears to be of minimal value to performance except in events lasting 2 h or longer. The form of CHO (i.e., glucose, fructose, sucrose) ingested may produce different blood glucose and insulin responses, but the rate of muscle glycogen resynthesis is about the same regardless of the structure.  相似文献   

5.
Muscle glycogen depletion has been proposed as one of the main causes of fatigue during exercise. However, few studies have addressed the contribution of liver glycogen to exercise performance. Using a low-intensity running protocol, here, we analyzed exercise capacity in mice overexpressing protein targeting to glycogen (PTG) specifically in the liver (PTGOE mice), which show a high concentration of glycogen in this organ. PTGOE mice showed improved exercise capacity, as determined by the distance covered and time ran in an extenuating endurance exercise, compared with control mice. Moreover, fasting decreased exercise capacity in control mice but not in PTGOE mice. After exercise, liver glycogen stores were totally depleted in control mice, but PTGOE mice maintained significant glycogen levels even in fasting conditions. In addition, PTGOE mice displayed an increased hepatic energy state after exercise compared with control mice. Exercise caused a reduction in the blood glucose concentration in control mice that was less pronounced in PTGOE mice. No changes were found in the levels of blood lactate, plasma free fatty acids, or β-hydroxybutyrate. Plasma glucagon was elevated after exercise in control mice, but not in PTGOE mice. Exercise-induced changes in skeletal muscle were similar in both genotypes. These results identify hepatic glycogen as a key regulator of endurance capacity in mice, an effect that may be exerted through the maintenance of blood glucose levels.  相似文献   

6.
Metabolic responses to exercise after fasting   总被引:1,自引:0,他引:1  
Fasting before exercise increases fat utilization and lowers the rate of muscle glycogen depletion. Since a 24-h fast also depletes liver glycogen, we were interested in blood glucose homeostasis during exercise after fasting. An experiment was conducted with human subjects to determine the effect of fasting on blood metabolite concentrations during exercise. Nine male subjects ran (70% maximum O2 consumption) two counterbalanced trials, once fed and once after a 23-h fast. Plasma glucose was elevated by exercise in the fasted trial but there was no difference between fed and fasted during exercise. Lactate was significantly higher (P less than 0.05) in fasted than fed throughout the exercise bout. Fat mobilization and utilization appeared to be greater in the fasted trial as evidenced by higher plasma concentrations of free fatty acids, glycerol, and beta-hydroxybutyrate as well as lower respiratory exchange ratio in the fasted trial during the first 30 min of exercise. These results demonstrate that in humans blood glucose concentration is maintained at normal levels during exercise after fasting despite the depletion of liver glycogen. Homeostasis is probably maintained as a result of increased gluconeogenesis and decreased utilization of glucose in the muscle as a result of lowered pyruvate dehydrogenase activity.  相似文献   

7.
饥饿及再投喂对日本囊对虾糖代谢的影响   总被引:2,自引:0,他引:2  
研究了日本囊对虾在饥饿和再投喂下血糖、肝胰脏糖原和肌糖原含量的变化.结果表明:在饥饿状态下,日本囊对虾肝胰脏糖原含量和血糖浓度在饥饿开始时迅速下降,肌糖原含量在饥饿10 d时下降到最低值,在饥饿10~15 d时通过糖原异生作用又恢复至最初水平,但随着饥饿时间的延长,糖原含量持续下降.恢复投喂后,肝胰脏糖原含量和肌糖原含量均能得到较好恢复,饥饿10 d和 15 d组的血糖浓度在恢复投喂10 d后显著高于对照组,但饥饿25 d组的血糖浓度始终显著低于对照.表明饥饿时间过长,对血糖浓度的恢复有较大影响  相似文献   

8.
The effects of acute alpha 1-adrenoceptor blockade with prazosin, beta 1-adrenoceptor blockade with atenolol, and nonselective beta-adrenoceptor blockade with propranolol were compared in a placebo-controlled crossover study of the hemodynamic and metabolic responses to acute exercise 2 h after prolonged prior exercise to induce skeletal muscle glycogen depletion, enhancing the dependence on hepatic glucose output and circulating free fatty acids (FFA). Plasma catecholamines were higher during exercise after, as opposed to before, glycogen depletion and were elevated further by all three drugs. Propranolol failed to produce a significant reduction in systolic blood pressure and elevated diastolic blood pressure. Atenolol reduced systolic blood pressure and did not change diastolic blood pressure. Both beta-blockers reduced FFA levels, but only propranolol lowered plasma glucose relative to placebo during exercise after glycogen depletion. In contrast, prazosin reduced systolic and diastolic blood pressures and resulted in elevated FFA and glucose levels. The results indicate important differences in the hemodynamic effects of beta 1-selective vs. nonselective beta-blockade during exercise after skeletal muscle glycogen depletion. Furthermore they confirm the importance of beta 2-mediated hepatic glucose production in maintaining plasma glucose levels during exercise. Acute alpha 1-blockade with prazosin induces reflex elevation of catecholamines, which in the absence of blockade of hepatic beta 2-receptors produces elevation of plasma glucose. The results suggest there is little role for alpha 1-mediated hepatic glucose production during exercise in humans.  相似文献   

9.
The effects of supramaximal exercise on blood glucose, insulin, and catecholamine responses were examined in 7 healthy male physical education students (mean +/- SD: age = 21 +/- 1.2 years; VO2max = 54 +/- 6 ml X kg-1 X min-1) in response to the following three dietary conditions: a normal mixed diet (N); a 24-h low carbohydrate (CHO) diet intended to reduce liver glycogen content (D1); and a 24-h low CHO diet preceded by a leg muscle CHO overloading protocol intended to reduce hepatic glycogen content with increased muscle glycogen store (D2). Exercise was performed on a bicycle ergometer at an exercise intensity of 130% VO2max for 90 s. Irrespective of the dietary manipulation, supramaximal exercise was associated with a similar significant (p less than 0.01) increase in the exercise and recovery plasma glucose values. The increase in blood glucose levels was accompanied by a similar increase in insulin concentrations in all three groups despite lower resting insulin levels in conditions D1 and D2. Lactate concentrations were higher during the early phase of the recovery period in the D2 as compared to the N condition. At cessation of exercise, epinephrine and norepinephrine were greatly elevated in all three conditions. These results indicate that the increase in plasma glucose and insulin associated with very high intensity exercise, persists in spite of dietary manipulations intended to reduce liver glycogen content or increase muscle glycogen store.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Summary S-100 protein-immunoreactive cells were demonstrated by immunocytochemical procedures in the hypophysis and saccus vasculosus of two species of elasmobranchs (Mustelus manazo and Scyliorhinus torazame). In the saccus vasculosus of M. manazo, immunoreactivity was detectable exclusively in the fibrous portions interposed between the epithelial layer and the blood vessels. In the neurohypophysis, tanycytes and astrocytes of the median eminence were immunostained, but only a few labeled cells were found in the neurointermediate lobe. In S. torazame, the neurohypophysis displayed a similar distribution of immunoreactivity, but there were no labeled cells in the saccus vasculosus. In both species, none of the glandular cells of the hypophysis displayed immunoreactivity. Electron-microscopic examination showed that the immunostained cells in the saccus vasculosus correspond to astrocytes.  相似文献   

11.
The amounts of glycogen and trehalose have been measured in cells of a prototrophic diploid yeast strain subjected to a variety of nutrient limitations. Both glycogen and trehalose were accumulated in cells deprived specifically of nirogen, sulfur, or phosphorus, suggesting that reserve carbohydrate accumulation is a general response to nutrient limitation. The patterns of accumulation and utilization of glycogen and trehalose were not identical under these conditions, suggesting that the two carbohydrates may play distinct physiological roles. Glycogen and trehalose were also accumulated by cells undergoing carbon and energy limitation, both during diauxic growth in a relatively poor medium and during the approach to stationary phase in a rich medium. Growth in the rich medium was shown to be carbon or energy limited or both, although the interaction between carbon source limitation and oxygen limitation was complex. In both media, the pattern of glycogen accumulation and utilization was compatible with its serving as a source of energy both during respiratory adaptation and during a subsequent starvation. In contrast, the pattern of trehalose accumulation and utilization seemed compatible only with the latter role. In cultures that were depleting their supplies of exogenous glucose, the accumulation of glycogen began at glucose concentrations well above those sufficient to suppress glycogen accumulation in cultures growing with a constant concentration of exogenous glucose. The mechanism of this effect is not clear, but may involve a response to the rapid rate of change in the glucose concentration.  相似文献   

12.
Regulation of blood glucose homeostasis during prolonged exercise   总被引:10,自引:0,他引:10  
The maintenance of normal blood glucose levels at rest and during exercise is critical. The maintenance of blood glucose homeostasis depends on the coordination and integration of several physiological systems, including the sympathetic nervous system and the endocrine system. During prolonged exercise increased demand for glucose by contracting muscle causes to increase glucose uptake to working skeletal muscle. Increase in glucose uptake by working skeletal muscle during prolonged exercise is due to an increase in the translocation of insulin and contraction sensitive glucose transporter-4 (GLUT4) proteins to the plasma membrane. However, normal blood glucose level can be maintained by the augmentation of glucose production and release through the stimulation of liver glycogen breakdown, and the stimulation of the synthesis of glucose from other substances, and by the mobilization of other fuels that may serve as alternatives. Both feedback and feedforward mechanisms allow glycemia to be controlled during exercise. This review focuses on factors that control blood glucose homeostasis during prolonged exercise.  相似文献   

13.
Adults of the Southern hemisphere lamprey Geotria australis were subjected to an exercise/recovery regime at the commencement and end of their 12–15 month non-trophic, upstream spawning migration. In early (immature) migrants and pre-spawning females, muscle glycogen was markedly depleted during exercise, but became rapidly replenished. As muscle lactate rose during exercise and peaked 1–1.5 h into the recovery period, and therefore after muscle glycogen had become replenished, it cannot be the direct source for that replenishment. However, both plasma lactate and glycerol (but not muscle glycerol and glucose) rose sharply during exercise and then declined markedly during the first 0.5 h of recovery and thus exhibited the opposite trend to that of muscle glycogen, implying that these limited pools of glycogenic precursors contribute to glycogen replenishment. Although plasma glucose rose following exercise, and consequently could also be a precursor for muscle glycogen replenishment, it remained elevated even after muscle glycogen had become replenished. While resting pre-spawning females and mature males retained high muscle glycogen concentrations, this energy store became permanently depleted in females during spawning. In mature males, muscle glycogen remained high and lactate low during the exercise/recovery regime, whereas muscle glycerol declined precipitously during exercise and then rose rapidly. In summary, vigorous activity by G. australis is fuelled extensively by anaerobic metabolism of glycogen early in the spawning run and by pre-spawning females, but by aerobic metabolism of its energy reserves in mature males.  相似文献   

14.
Glucose mobilization and utilization in the periphery and central nervous system are important during exercise and are responsible for exercise efficacy. Magnesium (Mg) is involved in energy production and plays a role in exercise performance. This study aimed to explore the effects of Mg on the dynamic changes in glucose and lactate levels in the muscle, blood and brain of exercising rats using a combination of auto-blood sampling and microdialysis. Sprague-Dawley rats were pretreated with saline or magnesium sulfate (MgSO4, 90 mg/kg, i.p.) 30 min before treadmill exercise (20 m/min for 60 min). Our results indicated that the muscle, blood, and brain glucose levels immediately increased during exercise, and then gradually decreased to near basal levels in the recovery periods of both groups. These glucose levels were significantly enhanced to approximately two-fold (P<0.05) in the Mg group. Lactate levels in the muscle, blood, and brain rapidly and significantly increased in both groups during exercise, and brain lactate levels in the Mg group further elevated (P<0.05) than those in the control group during exercise. Lactate levels significantly decreased after exercise in both groups. In conclusion, Mg enhanced glucose availability in the peripheral and central systems, and increased lactate clearance in the muscle during exercise.  相似文献   

15.
Previous studies have shown a decrease in plasma testosterone during prolonged physical exercise and 72 h fasting in rats. To determine whether this hormonal change has an influence upon energy metabolism, two experiments were carried out, in which the plasma levels of testosterone were elevated during prolonged physical exercise and fasting in male wistar rats. The effects of acute and chronic increases in the levels of circulating testosterone were studied, on the one hand after human chorionic gonadotropin (H.C.G.) injection, and on the other by prolonged testosterone perfusion with an osmotic minipump. Blood and tissue sampling were performed to evaluate blood glucose, alanine, and lactate, and tissue glycogen. The results in fed and rest control rats showed no changes in blood parameters under the effect of hypertestosteronemia but there was an increase in muscle glycogen after testosterone perfusion. In 72 h fasted rats both types of hypertestosteronemia were associated with a decrease in blood alanine and lactate ranging from 25% to 35%. Only testosterone perfusion was associated with higher concentrations of muscle glycogen. After 7 h of treadmill running, testosterone perfusion and H.C.G. injection induced a 35% decrease in blood alanine and a slight decrease in blood glucose, with no change in other parameters. Whereas an elevation in the level of testosterone can induce muscle glycogen compensation in the fed resting state, it cannot counteract the exhaustion of muscle glycogen during running.  相似文献   

16.
Muscle glycogen availability and temperature regulation in humans   总被引:1,自引:0,他引:1  
The effects of intramuscular glycogen availability on human temperature regulation were studied in eight seminude subjects immersed in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Each subject was immersed three times over a 3-wk period. Each immersion followed 2.5 days of a specific dietary and/or exercise regimen designed to elicit low (L), normal (N), or high (H) glycogen levels in large skeletal muscle groups. Muscle glycogen concentration was determined in biopsies taken from the vastus lateralis muscle before and after each immersion. Intramuscular glycogen concentration before the immersion was significantly different among the L, N, and H trials (P less than 0.01), averaging 247 +/- 15, 406 +/- 23, and 548 +/- 42 (SE) mmol glucose units.kg dry muscle-1, respectively. The calculated metabolic heat production during the first 30 min of immersion was significantly lower during L compared with N or H (P less than 0.05). The rate at which Tre decreased was more rapid during the L immersion than either N or H (P less than 0.05), and the time during the immersion at which Tre first began to decrease also appeared sooner during L than N or H. The results suggest that low skeletal muscle glycogen levels are associated with more rapid body cooling during water immersion in humans. Higher than normal muscle glycogen levels, however, do not increase cold tolerance.  相似文献   

17.
Summary In several coronet cells of the saccus vasculosus of Scylliorhinus large quantities of glycogen occur, as shown by light and electron microscopy. The significance of glycogen as an energy storage necessary for a transcellular ion transport process taking place in the coronet cells is discussed.The authors thank Dr. F.C.G. van de Veerdonk, W. F. Jansen and W. F. G. Flight for reading the manuscipt and for their critical remarks. They are also indebted to Mr. H. van Kooten and his staff for their valuable photographic assistance.  相似文献   

18.
The effect of carbohydrate supplementation on skeletal muscle glucose transporter GLUT-4 protein expression was studied in fast-twitch red and white gastrocnemius muscle of Sprague-Dawley rats before and after glycogen depletion by swimming. Exercise significantly reduced fast-twitch red muscle glycogen by 50%. During a 16-h exercise recovery period, muscle glycogen returned to control levels (25.0 +/- 1.4 micromol/g) in exercise-fasted rats (24.2 +/- 0. 3 micro). However, when carbohydrate supplementation was provided during and immediately postexercise by intubation, muscle glycogen increased 77% above control (44.4 +/- 2.1 micromol/g). Exercise-fasting resulted in an 80% increase in fast-twitch red muscle GLUT-4 mRNA but only a 43% increase in GLUT-4 protein concentration. Conversely, exercise plus carbohydrate supplementation elevated fast-twitch red muscle GLUT-4 protein concentration by 88% above control, whereas GLUT-4 mRNA was increased by only 40%. Neither a 16-h fast nor carbohydrate supplementation had an effect on fast-twitch red muscle GLUT-4 protein concentration or on GLUT-4 mRNA in sedentary rats, although carbohydrate supplementation increased muscle glycogen concentration by 40% (35.0 +/- 0.9 micromol/g). GLUT-4 protein in fast-twitch white muscle followed a pattern similar to fast-twitch red muscle. These results indicate that carbohydrate supplementation, provided with exercise, will enhance GLUT-4 protein expression by increasing translational efficiency. Conversely, postexercise fasting appears to upregulate GLUT-4 mRNA, possibly to amplify GLUT-4 protein expression on an increase in glucose availability. These regulatory mechanisms may help control muscle glucose uptake in accordance with glucose availability and protect against postexercise hypoglycemia.  相似文献   

19.
This study using light and electron microscopy indicates that the saccus vasculosus is distinguishable in 9-mm embryos and grows continuously throughout embryonic development to the adult stage. In the saccus vasculosus, epithelial mitoses are observed in all stages studied. Phases of centriologenesis, ciliogenesis, and globule formation have been characterized in developing coronet cells. During the phase of centriologenesis, new centrioles appear in association with pre-existing centrioles and not on deuterosomes. After ciliogenesis, each cilium differentiates to a globule almost at the same time as the other cilia of the coronet cell. The inner membrane system of the globules seems to derive from the ciliary plasma membrane. This membrane system often produces membrane whorls during the development. The different phases of coronet cell development have been found in the same individual and in all the stages studied except the 9-mm embryo. Cerebrospinal fluid-contacting neurons are observed in the saccus epithelium from the 12-mm embryos on and are distinguishable from coronet cells in their early formative stages. The three cell types of the saccus vasculosus increase continuously in number during development. Nerve processes are found in the saccus vasculosus of embryos, whereas differentiated synapses appear later in the fry. The significance of continued coronet cell formation is discussed in relation to a putative coronet cell and/or a globule renewal cycle in the adult.  相似文献   

20.
Eight-week restriction of physical activity markedly reduced the capacity for prolonged running. The rate of exercise-induced Tre increases was also significantly higher in comparison with control experiments. At the point of exhaustion blood glucose concentration and muscle glycogen content were similar in the control and cage-confined animals, however the rate of decrease in blood glucose level and muscle glycogen depletion during exercise were higher in the cage-confined dogs than in the controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号