首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gradients along the transport pathway from the peduncle to the endosperm cavity were examined during grain filling in wheat. Sieve tube exudate was collected from severed aphid stylets established on the peduncle and rachis and on the vascular bundles in the creases of grains. Phloem exudate could also be collected from broken grain pedicels, and by puncturing the vascular bundle in the grain crease with a needle. Stylets on excised grains persisted exuding, indicating that grain sieve tubes are capable of loading solutes. There was little, if any, discernible gradient in osmolality or solute composition (sucrose, total amino acids) of sieve tube contents along the phloem pathway from the peduncle to the rachis or along the rachis itself. Neither was a gradient detected in osmolality along the sieve tube pathway from the rachis through the rachilla and grain stalk to the crease. Demonstrable solute gradients occurred only across those tissues of the grain crease between the crease sieve tubes and the endosperm cavity, a distance of just 1 millimeter. However, while the sucrose concentration in the sieve tubes was almost tenfold that in the endosperm cavity sap, total amino acids were only threefold higher, and the potassium concentrations of the two were equal. Our observations strongly implicate the movement of assimilates from the sieve tubes and across the crease tissues as important control points in grain filling.  相似文献   

2.

Background and Aims

Enhancing the zinc (Zn) concentration in wheat (Triticum aestivum) grain is a breeding objective in order to improve human Zn nutrition. At enhanced plant Zn uptake, grain Zn levels do not increase proportionally and within the grain the endosperm Zn levels remain below grain Zn levels. This study analysed the temporal dynamics of Zn concentrations in grain tissues during grain filling to find major bottlenecks.

Methods

Plants of two cultivars were grown at 1 and 5 mg Zn kg−1 soil. Individual panicles were harvested 7, 14, 24 or 34 d after their flowering or at maturity and seeds were dissected into constituting tissues, which were analysed for Zn and other minerals.

Key Results

The Zn concentration of the crease was found to increase five- to nine-fold between 7 and 34 d after anthesis, while that of the endosperm decreased by 7 and 45 % when grown at 1 or 5 mg Zn kg−1, respectively. The Zn turnover rate (d−1) in the crease tissues was either independent of the Zn application level or higher at the lower Zn application level, and the Zn concentration increased in the crease tissues with time during grain filling while the turnover rate gradually decreased.

Conclusions

There is significant within-seed control over Zn entering the seed endosperm. While the seed crease Zn concentration can be raised to very high levels by increasing external Zn supply, the endosperm Zn concentrations will not increase correspondingly. The limited transfer of Zn beyond the crease requires more research to provide further insight into the rate-determining processes and their location along the pathway from crease to the deeper endosperm  相似文献   

3.
A potential cellular pathway for photosynthate transfer between the crease phloem and the starchy endosperm of the developing wheat grain has been delineated using fluorescent dyes. Membrane permeable and impermeable dyes have been introduced into the grain through the crease phloem, the endosperm cavity or the dorsal surface of the starchy endosperm. The movement of the symplastic tracer 5-(6)-6-carboxyfluorescein (CF) derived from 5-(6)-6-carboxyfluorescein diacetate (CFDA), from either direction between the crease phloem and the endosperm cavity, indicated that the symplastic pathway was operative from the crease phloem to the nucellar projection. Furthermore, the inward movement of apoplastic tracer trisodium, 3-hydroxy-5,8,10-pyrentrisulphonate (PTS) from the endosperm cavity and that of CF following plasmolysis showed that there was a high resistance to solute transfer within the apoplast of the pigment strand. All dyes entered the modified aleurone and adjacent sub-aleurone bordering the endosperm cavity. Subsequent movement of the symplastic tracers CF and sulphorhodamine G (SRG) into and through the endosperm was rapid. However, the movement of apoplastic tracers PTS and Calcofluor White (CFW) was relatively slow and with tissue plasmolysis, CF was confined to the cytoplasm of the modified aleurone and subaleurone cells. Together, these results demonstrate that there is a high resistance to solute movement within the apoplast of the cells bordering the endosperm cavity. We propose that photosynthate transfer is via the symplast to the nucellar projection where membrane exchange to the endosperm cavity occurs. Uptake from the cavity is by the modified aleurone and small endosperm cells prior to transfer through the symplast to and through the starchy endosperm.  相似文献   

4.
5.
Zinc (Zn) deficiency has been recognized as a potential risk for human health in many developing regions where staple food with low micronutrient density represents a major proportion of the diet. The success of strategies to increase Zn content in the edible part of crops requires better understanding of Zn transport to, and distribution within, the grains. The transfer of Zn from the growth medium to wheat (Triticum aestivum) grains in an ear culture system was investigated by using the stable Zn isotope (70) Zn, and the spatial distribution of Zn within the grains was studied by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Zinc was readily transported in the stem up to the rachis. More Zn accumulated in the stem when higher amounts of Zn were supplied to the medium. Once Zn was transported into the grain, Zn accumulated particularly in the crease vascular tissue. The gradient of (70) Zn concentration between crease vascular tissue, aleurone layer and endosperm demonstrates that Zn is distributed within grain through the crease phloem. These results suggest that two barriers of Zn transport into wheat grains may exist: between the stem tissue rachis and the grain, and the maternal and filial tissues in the grain.  相似文献   

6.
Cereal caryopsis transport tissues are essential channels via which nutrients are transported into the embryo and endosperm. There are differences and similarities between caryopsis transport tissues of maize, sorghum and wheat. Vascular bundle, endosperm transfer cells, endosperm conducting cells and embryo surrounding region are common in maize, sorghum and wheat. Placentochalaza is special in maize and sorghum, while chalaza and nucellar projection transfer cells are special in wheat. There is an obvious apoplastic cavity between maternal and filial tissues in sorghum and wheat caryopses, but there is no obvious apoplastic cavity in maize caryopsis. Based on the latest research, the development and function of the three cereal caryopsis transport tissues are discussed and investigated in this paper.  相似文献   

7.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   

8.
9.
Using expression analysis, the role of the sucrose transporter OsSUT1 during germination and early growth of rice seedlings has been examined in detail, over a time-course ranging from 1 d to 7 d post-imbibition. Unlike the wheat orthologue, TaSUT1, which is thought to be directly involved in sugar transfer across the scutellar epithelium, OsSUT1 is not expressed in the scutellar epithelial cell layer of germinating rice and is, therefore, not involved in transport of sugars across the symplastic discontinuity between the endosperm and the embryo. OsSUT1 expression was also absent from the aleurone cells, indicating it is not involved in the transport of sucrose in this cell layer during germination. However, by 3 d post-imbibition, OsSUT1 was present in the companion cells and sieve elements of the scutellar vascular bundle, where it may play a role in phloem loading of sucrose for transport to the developing shoot and roots. This sucrose is most likely sourced from hexoses imported from the endosperm. In addition, sucrose may be remobilized from starch granules which are present at a high density in the scutellar ground tissues surrounding the vasculature and at the base of the shoot. OsSUT1 was also present in the coleoptile and the first and second leaf blades, where it was localized to the phloem along the entire length of these tissues, and was also present within the phloem of the primary roots. OsSUT1 may be involved in retrieval of sugars from the apoplasm in these tissues.  相似文献   

10.
Roberts IM  Wang D  Thomas CL  Maule AJ 《Protoplasma》2003,222(1-2):31-43
Summary. Seed transmission of pea seed-borne mosaic virus (PSbMV) depends upon symplastic transport of the virus from infected maternal cells to the embryo. Such transport pathways have not been identified in higher plants. To identify these pathways, we have studied the ultrastructure of the tissues and cells around the micropyle of young developing seeds and compared transmitted and nontransmitted virus isolates. A characteristic of PSbMV infection was the presence of cylindrical inclusions positioned over plasmodesmal openings. The presence of cylindrical inclusions on the testa–endosperm boundary wall, together with immunogold labelling for virus-specific products on the wall and in the endosperm, indicated that symplastic connections existed at this interface. Close examination of the endosperm–suspensor boundary at the base of the suspensor revealed discontinuities in the suspensor sheath wall as porelike structures, which the virus might pass through en route to the embryo. A nontransmitted PSbMV isolate was able to invade the maternal tissues of the developing seed but was excluded from the embryo, although it was detected at a low level in the endosperm. Since the endosperm did not support virus replication, it appeared that passive accumulation determined the amount, timing, and location of the virus relative to the base of the suspensor. Rarely, therefore, could the nontransmitted virus isolate reach the correct location in the endosperm at the correct time for embryo infection via the suspensor to occur.Present address: Institute of Genetics, Chinese Academy of Sciences, Beijing, People's Republic of China.Correspondence and reprints: Department of Disease and Stress Biology, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom.Received January 7, 2003; accepted May 19, 2003; published online September 23, 2003  相似文献   

11.
12.
The spatial and temporal distribution of sucrose synthase (RSuS) in rice (Oryza sativa L.) was studied by Western and immunohistochemical analyses using the monospecific antibodies for three RSuS isoforms. In leaf tissues, RSuS1 was localized in the mesophyll while RSuS2 was in the phloem in addition to the mesophyll. In the roots, only RSuS1 was found in the phloem. No RSuS3 could be detected in any parts of etiolated seedlings. The expression of each RSus gene is closely linked to the seed development. RSuS1 was present in the aleurone layers of developing seeds, and at a low level in endosperm cells. RSuS2 was evenly distributed in seed tissues other than the endosperm. RSuS3 was localized predominantly in the endosperm cells. The tissue specific localizations of the three gene products suggest that RSuS1 plays a role in sugar transport into endosperm cells where the reaction catalyzed by RSuS3 provides the precursor of starch synthesis. RSus2, which is ubiquitously expressed, may play a housekeeping role.  相似文献   

13.
Phloem unloading and post-phloem transport in developing wheat (Triticum aestivum L.) grains were investigated by perfusing the endosperm cavities of attached grains. Relative unloading ratio (RUR) and the rate of sucrose release into the endosperm cavity (SRR) were calculated, respectively, from 14C import and from sucrose washout from the cavity. RUR and SRR continued at or near in vivo rates over a wide range of cavity sap osmolality (90 to approximately 500 milliosmolal) and sucrose concentration (14-430 mM) and for long times (29 h). These are much greater ranges than have been observed for the endosperm cavity in vivo (230-300 milliosmolal, and 40-120 mM, respectively), indicating that neither the cavity sap osmolality nor sucrose concentration are controlling factors for the rate of assimilate import into the cavity. The maintenance of in vivo transport rates over a wide range of conditions strongly implicates the role of transport processes within the maternal tissues of the wheat grain, rather than activities of the embryo or endosperm, in determining the rate of assimilate import into the grain. RUR was decreased by high concentrations of sucrose and sorbitol, but not of mannitol. By plasmolyzing some chalazal cells, sorbitol appeared to block symplastic transport across the crease tissues, but neither sucrose nor mannitol caused plasmolysis in maternal tissues of attached grains. The inhibition of RUR by KCN and carbonyl cyanide m-chlorophenyl (CCCP) and the continued import of sucrose into grains against its concentration gradient suggest that solute movement into the endosperm cavity might occur by active membrane transport. However, the evidence is weak, since KCN and CCCP appeared to act primarily on some aspect of symplastic (i.e. nonmembrane) transport. Also, sucrose could move from the endosperm cavity into the maternal tissues (i.e. opposite to the normal direction of sucrose movement), suggesting that transmembrane movement in the nucellus may be a reversible process. Pressure-driven flow into the grain could account for movement against a concentration gradient.  相似文献   

14.
The water relations parameters involved in assimilate flow into developing wheat (Triticum aestivum L.) grains were measured at several points from the flag leaf to the endosperm cavity in normally watered (Psi approximately -0.3 MPa) and water-stressed plants (Psi approximately -2 MPa). These included direct measurement of sieve tube turgor and several independent approaches to the measurement or calculation of water potentials in the peduncle, grain pericarp, and endosperm cavity. Sieve tube turgor measurements, osmotic concentrations, and Psi measurements using dextran microdrops showed good internal consistency (i.e. Psi = Psi(s) + Psi(p)) from 0 to -4 MPa. In normally watered plants, crease pericarp Psi and sieve tube turgor were almost 1 MPa lower than in the peduncle. This suggests a high hydraulic resistance in the sieve tubes connecting the two. However, observations concerning exudation rates indicated a low resistance. In water-stressed plants, peduncle Psi and crease pericarp Psi were similar. In both treatments, there was a variable, approximately 1-MPa drop in turgor pressure between the grain sieve tubes and vascular parenchyma cells. There was little between-treatment difference in endosperm cavity sucrose or osmotic concentrations or in the crease pericarp sucrose pool size. Our results re-emphasize the importance of the sieve tube unloading step in the control of assimilate import.  相似文献   

15.
Development of the Endosperm of Wheat   总被引:7,自引:0,他引:7  
EVERS  A. D. 《Annals of botany》1970,34(3):547-555
Mid transverse sections of kernels from developmental seriesof English spring wheats were examined in order to study themodes of formation of subaleurone endosperm cells and thoseof the inner endosperm. It was found that the two types of cellarise by the same process but differ in respect of time of initiation.As a result of differences in age the two cell types differin the amount of starch they contain. The amount of proteinis similar in subaleurone and inner endosperm cells; however,because of greater dilution with starch and consequently largercell size in the inner endosperm, the protein concentrationis higher in the subaleurone endosperm. The significance of the modified aleurone layer at the innerextremity of the crease has been investigated. The difference in function of this region from that of the remainderof the aleurone layer is of some importance in the formationof the crease.  相似文献   

16.
The cereal caryopsis is a complex tissue in which maternal and endosperm tissues follow distinct but coordinated developmental programs. Because of the hexaploid genome in wheat (Triticum aestivum), the identification of genes involved in key developmental processes by genetic approaches has been difficult. To bypass this limitation, we surveyed 888 genes that are expressed during caryopsis development using a novel high-throughput mRNA in situ hybridization method. This survey revealed novel distinct spatial expression patterns that either reflected the ontogeny of the developing caryopsis or indicated specialized cellular functions. We have identified both known and novel genes whose expression is cell cycle-dependent. We have identified the crease region as important in setting up the developmental patterning, because the transition from proliferation to differentiation spreads from this region to the rest of the endosperm. A comparison of this set of genes with the rice (Oryza sativa) genome shows that approximately two-thirds have rice counterparts but also suggests considerable divergence with regard to proteins involved in grain filling. We found that the wheat genes had significant homology with 350 Arabidopsis thaliana genes. At least 25 of these are already known to be essential for seed development in Arabidopsis, but many others remain to be characterized.  相似文献   

17.
In addition to the starchy endosperm, a specialized tissue accumulating storage material, the endosperm of wheat grain, comprises the aleurone layer and the transfer cells next to the crease. The transfer cells, located at the ventral region of the grain, are involved in nutrient transfer from the maternal tissues to the developing endosperm. Immunolabeling techniques, Raman spectroscopy, and synchrotron infrared micro-spectroscopy were used to study the chemistry of the transfer cell walls during wheat grain development. The kinetic depositions of the main cell wall polysaccharides of wheat grain endosperm, arabinoxylan, and (1–3)(1–4)-β-glucan in transfer cell walls were different from kinetics previously observed in the aleurone cell walls. While (1–3)(1–4)-β-glucan appeared first in the aleurone cell walls at 90°D, arabinoxylan predominated in the transfer cell walls from 90 to 445°D. Both aleurone and transfer cell walls were enriched in (1–3)(1–4)-β-glucan at the mature stage of wheat grain development. Arabinoxylan was more substituted in the transfer cell walls than in the aleurone walls. However, arabinoxylan was more feruloylated in the aleurone than in the transfer cell walls, whatever the stage of grain development. In the transfer cells, the ferulic acid was less abundant in the outer periclinal walls while para-coumarate was absent. Possible implications of such differences are discussed.  相似文献   

18.
19.
20.
We have analysed the chromosome organization in endosperm and embryo of bread wheat (Triticum aestivum L.), in order to compare these tissues with developing anthers, in which the centromeres associate, and the developing root xylem vessel cells, in which the chromosomes endoreduplicate to become polytene and associate via their centromeres. Both endosperm and embryo showed a typical Rabl configuration and a degree of non-homologous centromere association and the endosperm also showed extensive telomere association. Wheat endosperm is initially triploid and during its development a percentage of the nuclei increase their DNA content to 6C and 12C. 6C nuclei showed twice as many centromeres as 3C nuclei and the centromere number increased further in 12C nuclei. The higher the C-content of a nucleus the more the telomeres associated in endosperm. The vast majority of 12C nuclei showed six rye chromosome arms, although a few showed three associated groups of rye chromosome arms. This means that during endosperm development wheat nuclei show both polyploidization and polytenization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号