首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The plasmids R1162 and pSC101 have origins of conjugative transfer (oriTs) and corresponding relaxases that are closely related. The oriTs are made up of a highly conserved core, where DNA is cleaved by the relaxase prior to transfer, and an inverted repeat that differs in size and sequence. We show that in each case the seven base pairs adjacent to the core and within one arm of the inverted repeat are sufficient to determine specificity. Within this DNA there are three AT base pairs located 4 bp from the core. Mutations in the AT base pairs suggest that the relaxase makes essential contacts at these locations to the minor groove of the DNA. The remaining four bases are different for each oriT and are both necessary and sufficient for stringent recognition of oriT by the pSC101 mobilization proteins. In contrast, the R1162 mobilization proteins have a much more relaxed requirement for the base sequence of this specificity region. As a result, the R1162 mobilization proteins can initiate transfer from a variety of sites, including those derived from the chromosome. The R1162 mobilization proteins could therefore contribute to the horizontal gene transfer of DNA from diverse sources.  相似文献   

2.
DNA structural variations in the E. coli tyrT promoter   总被引:90,自引:0,他引:90  
H R Drew  A A Travers 《Cell》1984,37(2):491-502
X-ray studies have established that the structure of a right-handed, Watson-Crick double helix can change from place to place along its length as a function of base sequence. The base pairs transmit deformations out to the phosphate backbone, where they can then be recognized by proteins and other DNA-binding reagents. Here we have examined at single-bond resolution the interactions of three commonly used nucleases (DNAase I, DNAase II, and copper-phenanthroline) with a DNA of natural origin, the 160 bp tyrT promoter. All three of these reagents seem sensitive to DNA backbone geometry rather than base sequence per se. Their sequence-dependent patterns of cleavage provide evidence for structural polymorphism of several sorts: global variation in helix groove width, global variation in radial asymmetry, and local variation in phosphate accessibility. These findings explain how sequence zones of a certain base composition, or purine-pyrimidine asymmetry, can influence the recognition of DNA by protein molecules.  相似文献   

3.
Temperature-Gradient Gel Electrophoresis (TGGE) was employed to determine the thermal stabilities of 28 DNA fragments, 373 bp long, with two adjacent mismatched base pairs, and eight DNAs with Watson-Crick base pairs at the same positions. Heteroduplex DNAs containing two adjacent mismatches were formed by melting and reannealing pairs of homologous 373 bp DNA fragments differing by two adjacent base pairs. Product DNAs were separated based on their thermal stability by parallel and perpendicular TGGE. The polyacrylamide gel contained 3.36 M urea and 19.2 % formamide to lower the DNA melting temperatures. The order of stability was determined in the sequence context d(CXYG).d(CY'X'G) where X.X' and Y.Y" represent the mismatched or Watson-Crick base pairs. The identity of the mismatched bases and their stacking interactions influence DNA stability. Mobility transition melting temperatures (T u) of the DNAs with adjacent mismatches were 1.0-3.6 degrees C (+/-0.2 degree C) lower than the homoduplex DNA with the d(CCAG).d(CTGG) sequence. Two adjacent G.A pairs, d(CGAG).d(CGAG), created a more stable DNA than DNAs with Watson-Crick A.T pairs at the same sites. The d(GA).d(GA) sequence is estimated to be 0.4 (+/-30%) kcal/mol more stable in free energy than d(AA).d(TT) base pairs. This result confirms the unusual stability of the d(GA).d(GA) sequence previously observed in DNA oligomers. All other DNAs with adjacent mismatched base pairs were less stable than Watson-Crick homoduplex DNAs. Their relative stabilities followed an order expected from previous results on single mismatches. Two homoduplex DNAs with identical nearest neighbor sequences but different next-nearest neighbor sequences had a small but reproducible difference in T u value. This result indicates that sequence dependent next neighbor stacking interactions influence DNA stability.  相似文献   

4.
5.
This study reports findings of an unusual cluster of mutations spanning 22 bp (base pairs) in a monoclonal antibody expression vector. It was identified by two orthogonal methods: mass spectrometry on expressed protein and next‐generation sequencing (NGS) on the plasmid DNA. While the initial NGS analysis confirmed the designed sequence modification, intact mass analysis detected an additional mass of the antibody molecule expressed in CHO cells. The extra mass was eventually found to be associated with unmatched nucleotides in a distal region by checking full‐length sequence alignment plots. Interestingly, the complementary sequence of the mutated sequence was a reverse sequence of the original sequence and flanked by two 10‐bp reverse‐complementary sequences, leading to an undesirable DNA recombination. The finding highlights the necessity of rigorous examination of expression vector design and early monitoring of molecule integrity at both DNA and protein levels to prevent clones from having sequence variants during cell line development.  相似文献   

6.
Centromeres on chromosomes in the yeast Saccharomyces cerevisiae contain approximately 140 base pairs (bp) of DNA. The functional centromere (CEN) region contains three important sequence elements (I, PuTCACPuTG; II, 78 to 86 bp of high-AT DNA; and III, a conserved 25-bp sequence with internal bilateral symmetry). Various point mutations or deletions in the element III region have a profound effect on CEN function in vivo, indicating that this DNA region is a key protein-binding site. This has been confirmed by the use of two in vitro assays to detect binding of yeast proteins to DNA fragments containing wild-type or mutationally altered CEN3 sequences. An exonuclease III protection assay was used to demonstrate specific binding of proteins to the element III region of CEN3. In addition, a gel DNA fragment mobility shift assay was used to characterize the binding reaction parameters. Sequence element III mutations that inactivate CEN function in vivo also prevent binding of proteins in the in vitro assays. The mobility shift assay indicates that double-stranded DNAs containing sequence element III efficiently bind proteins in the absence of sequence elements I and II, although the latter sequences are essential for optimal CEN function in vivo.  相似文献   

7.
8.
Analysis of the Drosophila rDNA promoter by transient expression.   总被引:7,自引:4,他引:3  
  相似文献   

9.
Molecular Cloning of cDNA to mRNA for a Cerebellar Spot 35 Protein   总被引:2,自引:1,他引:1  
The nucleotide sequence of mRNA for rat cerebellar spot 35 protein, a Ca-binding protein, was determined from recombinant complementary DNA (cDNA) clones. The sequence was composed of 1,714 base pairs (bp) which included the 783 bp of the complete coding region, the 130 bp of the 5'-noncoding region, and the 801 bp of the 3'-noncoding region containing a polyadenylation signal. In addition, a polyadenylic acid [poly(A)] tail was also found. Because the size of spot 35 mRNA was estimated to be about 1,900 bases by Northern blot analysis, the longest insert was verified to contain a nearly full-length cDNA sequence including the poly(A) tail. The amino acid sequence of the protein deduced from the nucleotide sequence contains 261 amino acids and at least five Ca-binding domains. There was a high homology in the amino acid sequences (79%) and the nucleotide sequences (77%) between spot 35 protein and chick intestinal Ca-binding protein (28K).  相似文献   

10.
Spin蛋白家族是具有Spin/Ssty保守结构域并在配子发生过程中发挥关键作用的一类分子。研究利用简并引物PCR,从斑马鱼成熟卵母细胞SMART cDNA文库中筛选到260 bp的DrSpin-1和DrSpin-2部分序列,经序列同源性比对,斑马鱼DrSpin-1的部分氨基酸序列与银鲫CagSpin一致性高达81%。利用RACEPCR从该cDNA文库中获得斑马鱼DrSpin-1的全长cDNA序列。序列分析表明,DrSpin-1全长cDNA为1082 bp,开放阅读框771 bp,编码257个氨基酸,具有三个Spin/Ssty保守域,8个可能的磷酸化位点,初步确定斑马鱼DrSpin-1是Spin基因家族成员。斑马鱼DrSpin-1蛋白与已报道的鱼类Spin蛋白多重序列比对表明,DrSpin-1蛋白与银鲫CagSpin蛋白同源性最高。可以推测克隆得到的斑马鱼DrSpin-1与已知功能的银鲫CagSpin具有相近的表达谱和生物学功能,可能在配子发生和受精过程中发挥重要作用。  相似文献   

11.
In eukaryotes, genetic exchange between homologs is facilitated by a tripartite proteinaceous structure called the synaptonemal complex (SC). Several lines of evidence indicate that the genes that encode components of SC are essential for meiotic chromosome pairing and recombination. However, the molecular mechanism by which SC proteins promote these processes is obscure. Here, we report that Saccharomyces cerevisiae Hop1 protein, a component of SC, promotes pairing between two double-stranded DNA helices containing a centrally located G/C isochore. Significantly, pairing was rapid and robust, and required four contiguous G/C base pairs. Using a series of truncated DNA double helices we show that 20 bp on either side of 8 bp target G/C sequence is essential for pairing. To our knowledge, Hop1 is the first protein shown to do so from yeast or any other organism. These results indicate that Hop1 protein is likely to play a direct role in meiotic chromosome pairing and recombination.  相似文献   

12.
In Streptococcus lactis ML3, the lactose plasmid (pSK08) forms cointegrates with a conjugal plasmid (pRS01). It has been proposed that cointegration is mediated by insertion sequences (IS) present on pSK08 (D. G. Anderson and L.L. McKay, J. Bacteriol. 158:954-962, 1984). We examined the junction regions of the cointegrate pPW2 and the corresponding regions of pSK08 (donor) and pRS01 (target) and identified a new IS element on pSK08 (ISS1S) which was involved in and duplicated during formation of pPW2. ISS1S was 808 base pairs (bp) in size, had 18-bp inverted repeats (GGTTCTGTTGCAAAGTTT) at its ends, contained a single long open reading frame encoding a putative protein of 226 amino acids, and generated 8-bp direct repeats of target DNA during cointegrate formation. An iso-IS element, ISS1T, which is duplicated in some other cointegrate plasmids, was also found on pSK08. ISS1T was also 808 bp in size and was identical to ISS1S in sequence except for 4 bp, none of which altered the inverted repeats or amino acid sequence of the open reading frame. Comparison of ISS1 with gram-negative IS26 revealed strong homologies in size (820 bp), sequence of inverted repeats (GGCACTGTTGCAAA), size of direct repeats generated after cointegration (8 bp), and number, size, and amino acid sequence (44.5% identical) of the open reading of frame.  相似文献   

13.
Site and sequence specificity of the daunomycin-DNA interaction   总被引:8,自引:0,他引:8  
The site and sequence specificity of the daunomycin-DNA interaction was examined by equilibrium binding methods, by deoxyribonuclease I footprinting studies, and by examination of the effect of the antibiotic on the cleavage of linearized pBR322 DNA by restriction endonucleases PvuI and EcoRI. These three experimental approaches provide mutually consistent results showing that daunomycin indeed recognizes specific sites along the DNA lattice. The affinity of daunomycin toward natural DNA increases with increasing GC content. The quantitative results are most readily explained by binding models in which daunomycin interacts with sites containing two adjacent GC base pairs, possibly occurring as part of a triplet recognition sequence. Deoxyribonuclease I footprinting studies utilizing the 160 base pair (bp) tyrT DNA fragment and 61 and 53 bp restriction fragments isolated from pBR322 DNA further define the sequence specificity of daunomycin binding. Specific, reproducible protection patterns were obtained for each DNA fragment at 4 degrees C. Seven protected sequences, ranging in size from 4 to 14 bp, were identified within the tyrT fragment. Relative to the overall tyrT sequence, these protected sequences were GC rich and contained a more limited and distinct distribution of di- and trinucleotides. Within all of the protected sequences, a triplet containing adjacent GC base pairs flanked by an AT base pair could be found in one or more copies. Nowhere in the tyrT fragment did that triplet occur outside a protected sequence. The same triplet occurred within seven out of nine protected sequences observed in the fragments isolated from pBR322 DNA. In the two remaining cases, three contiguous GC base pairs were found. We conclude that the preferred daunomycin triplet binding site contains adjacent GC base pairs, of variable sequence, flanked by an AT base pair. This conclusion is consistent with the results of a recent theoretical study of daunomycin sequence specificity [Chen, K.-X., Gresh, N., & Pullman, B. (1985) J. Biomol. Struct. Dyn. 3, 445-466]. Adriamycin and the beta-anomer of adriamycin produce the same qualitative pattern of protection as daunomycin with the tyrT fragment. Daunomycin inhibits the rate of digestion of pBR322 DNA by PvuI (recognition sequence 5'-CGATCG-3') to a greater extent than it does EcoRI (recognition sequence 5'-GAATTC-3'), a finding consistent with the conclusions derived from our footprinting studies. Our results, as a whole, are the clearest indication to date that daunomycin recognizes a specific DNA sequence as a preferred binding site.  相似文献   

14.
We propose that the basic unit of chromatin is constructed of two isologously paired heterotypic protein tetramers each containing one molecule of H2A, H2B, H3, and H4 histone. These proteins form a core that holds 140 base pairs (bp) of DNA in a single left-handed, non-interwound DNA supercoil approximately 95 bp in circumference, creating A nucleosome particle (DNA and protein) organized about a dyad axis of symmetry. Such a nucleosome can open up into its separate half-nucleosomes to allow genetic readout without requiring histone displacement  相似文献   

15.
The rapid increase in the number of novel proteins identified in genome projects necessitates simple and rapid methods for assigning function. We describe a strategy for determining whether novel proteins possess typical sequence-specific DNA-binding activity. Many proteins bind recognition sequences of 5 bp or less. Given that there are 45 possible 5 bp sites, one might expect the length of sequence required to cover all possibilities would be 45 × 5 or 5120 nt. But by allowing overlaps, utilising both strands and using a computer algorithm to generate the minimum sequence, we find the length required is only 516 base pairs. We generated this sequence as six overlapping double-stranded oligonucleotides, termed pentaprobe, and used it in gel retardation experiments to assess DNA binding by both known and putative DNA-binding proteins from several protein families. We have confirmed binding by the zinc finger proteins BKLF, Eos and Pegasus, the Ets domain protein PU.1 and the treble clef N- and C-terminal fingers of GATA-1. We also showed that the N-terminal zinc finger domain of FOG-1 does not behave as a typical DNA-binding domain. Our results suggest that pentaprobe, and related sequences such as hexaprobe, represent useful tools for probing protein function.  相似文献   

16.
Falcon CM  Matthews KS 《Biochemistry》2000,39(36):11074-11083
The mechanism by which genetic regulatory proteins discern specific target DNA sequences remains a major area of inquiry. To explore in more detail the interplay between DNA and protein sequence, we have examined binding of variant lac operator DNA sequences to a series of mutant lactose repressor proteins (LacI). These proteins were altered in the C-terminus of the hinge region that links the N-terminal DNA binding and core sugar binding domains. Variant operators differed from the wild-type operator, O(1), in spacing and/or symmetry of the half-sites that contact the LacI N-terminal DNA binding domain. Binding of wild-type and mutant proteins was affected differentially by variations in operator sequence and symmetry. While the mutant series exhibits a 10(4)-fold range in binding affinity for O(1) operator, only a approximately 20-fold difference in affinity is observed for a completely symmetric operator, O(sym), used widely in studies of the LacI protein. Further, DNA sequence influenced allosteric response for these proteins. Binding of this LacI mutant series to other variant operator DNA sequences indicated the importance of symmetry-related bases, spacing, and the central base pair sequence in high affinity complex formation. Conformational flexibility in the DNA and other aspects of the structure influenced by the sequence may establish the binding environment for protein and determine both affinity and potential for allostery.  相似文献   

17.
The expression of transgenic proteins is often low and unstable over time, a problem that may be due to integration of the transgene in repressed chromatin. We developed a screening technology to identify genetic elements that efficiently counteract chromatin-associated repression. When these elements were used to flank a transgene, we observed a substantial increase in the number of mammalian cell colonies that expressed the transgenic protein. Expression of the shielded transgene was, in a copy number-dependent fashion, substantially higher than the expression of unprotected transgenes. Also, protein production remained stable over an extended time period. The DNA elements are small, not exceeding 2,100 base pairs (bp), and they are highly conserved between human and mouse, at both the functional and sequence levels. Our results demonstrate the existence of a class of genetic elements that can readily be applied to more efficient transgenic protein production in mammalian cells.  相似文献   

18.
Differential melting curves are reported for four DNA restriction fragments (789, 301, 203, and 95 base pairs in length) spanning the lactose control region. All but the smallest melt with two or more subtransitions. Maps are proposed which identify the positions of regions of different thermal stability in the sequences. The sizes of regions comprising subtransitions range from 60 to 200 base pairs. An analysis is made of the cooperativity exhibited between regions in the sequence. The effect on the shape of the differential melting curves of Na+ between 10 mM and 0.5 M as well as that of Mg2+ and glycerol has been determined. An 81-bp-long sequence of unusual thermal stability occurs at the lactose promoter. Its TM change, resulting from the above change in salt concentration, is out of step by 1.5 degree C with the neighboring DNA sequence. The potential biological significance of this behavior is discussed.  相似文献   

19.
Y H Wang  J Griffith 《Biochemistry》1991,30(5):1358-1363
We recently showed that bulged bases kink duplex DNA, with the degree of kinking increasing in roughly equal increments as the number of bases in the bulge increases from one to four [Hsieh, C.-H., & Griffith, J.D. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 4833-4837]. Here we have examined the kinking of DNA by single A, C, G, or T bulges with different neighboring base pairs. Synthetic 30 base pair (bp) duplex DNAs containing 2 single-base bulges spaced by 10 bp were ligated head to tail, and their electrophoretic behavior in highly cross-linked gels was examined. All bulge-containing DNAs showed marked electrophoretic retardations as compared to non-bulge-containing DNA. Regardless of the sequence of the flanking base pairs, purine bulges produced greater retardations than pyrimidine bulges. Furthermore, C and T bulges produced the same retardations as did G and A bulges. Bulged DNA containing different flanking base pairs showed marked differences in electrophoretic mobility. For C-bulged DNA, the greatest retardations were observed with G.C neighbors, the least with T.A neighbors, and an intermediate amount with a mixture of neighboring base pairs. For A-bulged DNA, the retardations were greatest with G.C neighbors, less with T.A neighbors, even less with a mixture of neighboring base pairs, and finally least with C.G neighbors. Thus flanking base pairs affect C-bulged DNA and A-bulged DNA differently, and G.C and C.G flanking base pairs were seen to have very different effects. These results imply an important role of base stacking in determining how neighboring base pairs influence the kinking of DNA by a single-base bulge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号