首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycosylated cellulases from Cellulomonas fimi were compared with their non-glycosylated counterparts synthesized in Escherichia coli from recombinant DNA. Glycosylation of the enzymes does not significantly affect their kinetic properties, or their stabilities towards heat and pH. However, the glycosylated enzymes are protected from attack by a C. fimi protease when bound to cellulose, while the non-glycosylated enzymes yield active, truncated products with greatly reduced affinity for cellulose.  相似文献   

2.
Abstract β-Glucosidase in Aspergillus nídulans was found to be both intracellular and extracellular. The intracellular β-glucosidase was synthesized after the exhaustion of carbon source in the medium. The extracellular enzyme appeared with autolysis of the mycelium. Biosynthesis of β-glucosidase was not induced by various carbohydrates but repressed to varying extents in the presence of glucose, glycerol, and 2-deoxyglucose. This repression was not relieved by addition of cAMP. The repression was relieved much more by mutations in the creA gene than by one in the creC gene. Thus, β-glucosidase synthesis in A. nidulans is subject to carbon catabolite repression.  相似文献   

3.
The family 2a carbohydrate-binding module (CBM2a) of xylanase 10A from Cellulomonas fimi binds to the crystalline regions of cellulose. It does not share binding sites with the N-terminal family 4 binding module (CBM4-1) from the cellulase 9B from C.fimi, a module that binds strictly to soluble sugars and amorphous cellulose. The binding of CBM2a to crystalline matrices is mediated by several residues on the binding face, including three prominent, solvent-exposed tryptophan residues. Binding to crystalline cellulose was analyzed by making a series of conservative (phenylalanine and tyrosine) and non-conservative substitutions (alanine) of each solvent-exposed tryptophan (W17, W54 and W72). Other residues on the binding face with hydrogen bonding potential were substituted with alanine. Each tryptophan plays a different role in binding; a tryptophan is essential at position 54, a tyrosine or tryptophan at position 17 and any aromatic residue at position 72. Other residues on the binding face, with the exception of N15, are not essential determinants of binding affinity. Given the specificity of CBM2a, the structure of crystalline cellulose and the dynamic nature of the binding of CBM2a, we propose a model for the interaction between the polypeptide and the crystalline surface.  相似文献   

4.
Streptomyces reticuli produces a 35-kDa cellulose-binding protein (AbpS) which interacts strongly with crystalline forms of cellulose (Avicel, bacterial microcrystalline cellulose, and tunicin cellulose); other polysaccharides are recognized on weakly (chitin and Valonia cellulose) or not at all (xylan, starch, and agar). The protein could be purified to homogeneity due to its affinity to Avicel. After we sequenced internal peptides, the corresponding gene was identified by reverse genetics. In vivo labelling experiments with fluorescein isothiocyanate (FITC), FITC-labelled secondary antibodies, or proteinase K treatment revealed that the anchored AbpS protrudes from the surfaces of the hyphae. When we investigated the hydrophobicity of the deduced AbpS, one putative transmembrane segment was predicted at the C terminus. By analysis of the secondary structure, a large centrally located α-helix which has weak homology to the tropomyosin protein family was found. Physiological studies showed that AbpS is synthesized during the late logarithmic phase, independently of the carbon source.  相似文献   

5.
Endoglucanase C (CenC) from Cellulomonas fimi binds to cellulose and to Sephadex. The enzyme has two contiguous 150-amino-acid repeats (N1 and N2) at its N-terminus and two unrelated contiguous 100-amino-acid repeats (C1 and C2) at its C-terminus. Polypeptides corresponding to N1, N1N2, C1, and C1C2 were produced by expression of appropriate cenC gene fragments in Escherichia coli. N1N2, but not N1 alone, binds to Sephadex; both polypeptides bind to Avicel, (a heterogeneous cellulose preparation containing both crystalline and non-crystalline components). Neither C1 nor C1C2 binds to Avicel or Sephadex. N1N2 and N1 bind to regenerated ('amorphous') cellulose but not to bacterial crystalline cellulose; the cellulose-binding domain of C. fimi exoglucanase Cex binds to both of these forms of cellulose. Amino acid sequence comparison reveals that N1 and N2 are distantly related to the cellulose-binding domains of Cex and C. fimi endoglucanases A and B.  相似文献   

6.
A family II cellulose-binding domain (CBD) of an exoglucanase/xylanase (Cex) from the bacterium Cellulomonas fimi was replaced with the family I CBD of cellobiohydrolase I (CbhI) from the fungus Trichoderma reesei. Expression of the hybrid gene in Escherichia coli yielded up to 50 mg of the hybrid protein, CexCBDCbhI, per liter of culture supernatant. The hybrid was purified to homogeneity by affinity chromatography on cellulose. The relative association constants (Kr) for the binding of Cex, CexCBDCbhI, the catalytic domain of Cex (p33), and CbhI to bacterial microcrystalline cellulose (BMCC) were 14.9, 7.8, 0.8, and 10.6 liters g-1, respectively. Cex and CexCBDCbhI had similar substrate specificities and similar activities on crystalline and amorphous cellulose. Both released predominantly cellobiose and cellotriose from amorphous cellulose. CexCBDCbhI was two to three times less active than Cex on BMCC, but significantly more active than Cex on soluble cellulose and on xylan. Unlike Cex, the hybrid protein neither bound to alpha-chitin nor released small particles from dewaxed cotton fibers.  相似文献   

7.
Interleukin-1 (IL-1) is synthesized as a 31 kDa precursor protein, whose multiple extracellular activities are attributed to receptor binding of a processed, carboxy-terminal 17 kDa peptide. Unlike other secreted proteins, the IL-1 precursor lacks a hydrophobic leader sequence and is not found in organelles composing the classical secretory pathway. In order to further clarify the intracellular processing of IL-1, we studied its site of synthesis in human monocytes. Secreted and integral membrane proteins are translated on membrane-bound polyribosomes, while intracellular proteins are translated on free polyribosomes. Free and membrane-bound polysomes were isolated from Lipid A-stimulated monocyte lysates and immunoblotted using antibodies specific to the N-terminal regions of the IL-1 alpha and beta precursors. Free polysome fractions showed multiple small bands consistent with nascent peptide chains; membrane-bound polysomes yielded no detectable IL-1. Polysome fractions were then analyzed by immunoelectron microscopy; nascent IL-1 alpha and beta peptide chains were readily seen emerging from cytoskeletal-associated free polyribosomes, but not membrane-bound polyribosomes. Electron microscopic in situ hybridization revealed IL-1 mRNA chains attached to cytoskeletal-associated free, but not membrane-bound polyribosomes. The intracellular distribution of the fully synthesized IL-1 beta precursor was studied in human mesangial cells (HMC), whose cytoskeletal organization is more readily evaluated than that of monocytes. Dual immunofluorescence microscopy of these cells revealed a complex intracellular distribution of the fully synthesized 31 kDa IL-1 precursors. IL-1 was asymmetrically distributed between cytosolic, microtubule, and nuclear compartments, without association with actin or intermediate filaments. This demonstration of the sites of IL-1 synthesis and patterns of intracellular distribution provide further evidence for an extracellular release mechanism which is clearly distinct from the classical secretory pathway.  相似文献   

8.
We used the yeast MEL1 gene for secreted alpha-galactosidase to construct cartridges for the regulated expression of foreign proteins from Saccharomyces cerevisiae. The gene for a Cellulomonas fimi beta-1,4-exoglucanase was inserted into one cartridge to create a fusion of the alpha-galactosidase signal peptide to the exoglucanase. Yeast transformed with plasmids containing this construction produced active extracellular exoglucanase when grown under conditions appropriate to MEL1 promoter function. The cells also produced active intracellular enzyme. The secreted exoglucanase was N-glycosylated and was produced continuously during culture growth. It hydrolyzed xylan, carboxymethyl cellulose, 4-methylumbelliferyl-beta-d-cellobiose, and p-nitrophenyl-beta-d-cellobiose. A comparison of the recombinant S. cerevisiae enzyme with the native C. fimi enzyme showed the yeast version to have an identical K(m) and pH optimum but to be more thermostable.  相似文献   

9.
Transport and processing of staphylococcal alpha-toxin   总被引:7,自引:1,他引:6       下载免费PDF全文
Two larger precursors to staphylococcal alpha-toxin were identified and partially characterized. Both precursor proteins were present on the cell membrane at very low levels and appeared to be rapidly processed to the mature form. Dinitrophenol inhibited processing such that the two precursors accumulated in the membranes, whereas little extracellular (mature) alpha-toxin is formed. The peptide maps of the 35S-labeled peptides from extracellular alpha-toxin and the two precursors were almost identical. The larger precursor protein contained four additional peptides and the smaller precursor protein contained three additional peptides not found in the extracellular toxin.  相似文献   

10.
Regulation of transport of D-glucose and D-fructose was studied in Kluyveromyces marxianus grown in continuous culture. Both substrates could be transported by at least two different transport systems, low-affinity transport and high-affinity proton-sugar symport. The low-affinity transporter, specific for both glucose and fructose, was constitutively present and was apparently not regulated by carbon catabolite repression. Regulation of the activity of the glucose- and fructose-specific proton symport systems appeared to proceed mainly through catabolite repression. Activation of symport did not need the presence of specific inductor molecules in the medium. Nevertheless, the capacities of the proton-sugar symporters varied in cells grown on a wide variety of carbon sources. The possibility that the control of proton symport activity is related to the presence of specific intracellular metabolites is discussed.  相似文献   

11.
During synthesis in vivo the castor bean lectin precursors initially appear in the endoplasmic reticulum as a group of core glycosylated polypeptides of relative molecular mass 64 000-68 000. Pretreatment of intact castor bean endosperm tissue with tunicamycin partially inhibits the cotranslational core glycosylation step and results in the accumulation of a single sized unglycosylated precursor polypeptide of relative molecular mass 59 000. The glycosylated precursors in the endoplasmic reticulum were enzymically converted to the 59 000-Mr form by incubation with endoglucosaminidase H. Intracellular transport of the glycosylated lectin precursors from the endoplasmic reticulum to a denser vesicle fraction was accompanied by modifications to the oligosaccharide moieties which conferred resistance to the action of endoglucosaminidase H. The post-translational addition of fucose to the carbohydrate chain was identified as one of the oligosaccharide modification steps. Fucose addition was catalysed by a glycosyltransferase associated with a smooth-surfaced membrane fraction which was distinct from the endoplasmic reticulum and which was tentatively identified as the Golgi apparatus. Glycosylation was not essential for intracellular transport of the lectin precursors: unglycosylated precursor synthesized in the presence of tunicamycin gave rise to unglycosylated lectin subunits in the protein bodies.  相似文献   

12.
13.
Several strains of E. coli were grown on different sources of carbon and β-galactosidase activity as well as intracellular and extracellular concentrations of c-AMP were determined. There was a good (inverse) correlation between extracellular concentrations of c-AMP and the intensity of catabolite repression, whereas the relationship between intracellular c-AMP levels and catabolite repression was not clear-cut.  相似文献   

14.
In vitro synthesized precursors of several mitochondrial proteins, including P-450(SCC), adrenodoxin, and malate dehydrogenase, bound to liposomes prepared from mitochondrial phospholipids, but not to those from microsomal phospholipids. When liposomes were prepared from various pure phospholipids, adrenodoxin precursor was bound only to the liposomes that contained cardiolipin. The liposomes containing other phospholipids did not show the binding affinity for the precursor. The binding was observed only with the precursor peptides of adrenodoxin and malate dehydrogenase, and their mature forms were not bound to the liposomes. The binding of the precursors was dependent on the concentration of cardiolipin in the liposomes. Liposomes containing various cardiolipin derivatives with modified polar head groups showed very different binding affinity for adrenodoxin precursor, suggesting the importance of the structure of the polar head of the cardiolipin molecule. Two or three positively charged amino acid residues in the extension peptide of P-450(SCC) precursor were replaced by neutral amino acid residues by site-directed mutagenesis. The mutated P-450(SCC) precursors did not bind to the liposomes containing cardiolipin. The results indicated that mitochondrial protein precursors have specific affinity for cardiolipin, and the affinity was due to the interaction between the extension peptides of the precursors and the polar head of the cardiolipin molecule.  相似文献   

15.
During growth on wood beta-1,4-xylans the yeast Cryptococcus albidus produced at least two enzymes which convert the polysaccharide to xylose catabolized by the cells. The enzyme almost completely secreted into culture fluid was identified as an endo-1,4-beta-xylanase. The function of the extracellular beta-xylanase is to hydrolyze xylan to oligosaccharides, mainly to xylobiose and xylotriose, which enter the cell where they are split by the second identified enzyme, a cell-bound beta-xylosidae (xylobiase). Aryl beta-xylosidase activity detected in the culture fluid was snown to be due to low affinity of beta-xylanase for p-nitrophenyl beta-D-xylopyranoside. This property of beta-xylanase was preserved after purification of the enzyme by chromatography on DEAE-cellulose, CM-Sephadex and Biogel A 1.5 m or Biogel P 100. Purified beta-xylanase exhibited certain microheterogeneity after polyacrylamide gel electrophoresis. Both extracellular beta-xylanase and intracellular beta-xylosidase were produced in much lower amounts by the cells grown on glucose than by the cells grown on xylan. This suggested that they are not produced constitutively. The investigated strain was not able to grow on cellulose and the crude and purified beta-xylanase were unable to hydrolyze cellulose or its soluble derivatives.  相似文献   

16.
17.
Qi M  O'Brien JP  Yang J 《Biopolymers》2008,90(1):28-36
A structured triblock protein was designed to explore the potential of engineered peptides to function as high-performance ink dispersants and binders. The protein consists of three functional elements, including a pigment binding domain, a hydrophilic linker, and a printing surface binding domain. To construct such a chimeric protein, a carbon black binding peptide, FHENWPS, and a cellulose binding peptide, THKTSTQRLLAA, were identified from phage display libraries through biopanning, based on their strong and specific binding affinities to carbon black and cellulose. They were used as carbon black and cellulose binding domains, respectively, in a recombinant triblock protein. A linker sequence, PTPTPTPTPTPTPTPTPTPTPTP, was adapted from endoglucanase A of the bacterium Cellulomonas fimi, as a small, rigid, and hydrophilic interdomain linker. When incorporated into the triblock structure between the carbon black and cellulose binding sequences, the linker sufficiently isolates these two elements and allows dual binding activity. The structured triblock protein was shown to disperse carbon black particles and attach it to paper surfaces. Thus, the utility of structured proteins having useful dispersant and binding properties for digital printing inks was demonstrated.  相似文献   

18.
19.
Abstract Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) followed by immunoblotting was employed to detect intracellular precursors of endo-β-1,4-glucanases (EGs) in Trichoderma reesei QM9414 under conditions of de novo induction by sophorose and de novo carbon catabolite derepression by lactose. Secretion of EGs was always preceded by intracellular accumulation of lower M r precursors, which became processed to larger M r forms immediately prior to their extracellular appearance. Treatment of the larger M r forms with α-mannosidase converted them to forms with the same M r as the smaller forms, whereas Endo H treatment was without effect. These results are consistent with a requirement of O -linked glycosylation for secretion of EGs by T. reesei .  相似文献   

20.
Calvasculin, an EF-hand protein with a molecular mass of 11 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is present abundantly in bovine aorta (Watanabe, Y., Kobayashi, R., Ishikawa, T., and Hidaka, H. (1992) Arch. Biochem. Biophys. 292, 563-569). This protein is synthesized constitutively by bovine aortic smooth muscle (BASM) cells and rat embryo fibroblast 3Y1 cells in culture. We discovered that calvasculin was secreted by BASM cells and 3Y1 cells. Immunofluorescence staining of BASM cells showed a granular distribution for calvasculin that was typical of a secreted protein. This protein bound with an extracellular matrix protein, 36-kDa microfibril-associated glycoprotein (36-kDa MAP), in a Ca(2+)-dependent manner in vitro. A stoichiometry analysis showed that the 36-kDa MAP bound 2.2 calvasculin eq/mol of protein. Solid-phase binding assays indicated a preferential affinity of native calvasculin for 36-kDa MAP among the extracellular matrices in a Ca(2+)-dependent manner. These results suggest that calvasculin, intracellular Ca(2+)-binding protein, is released to the extracellular space and binds with 36-kDa MAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号