首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipotubuloids in ovary epidermis of Ornithogalum umbellatum which are a domain of cytoplasm containing a lot of lipid bodies, microtubules and actin filaments, ribosomes, endoplasmic reticulum as well as scarce mitochondria, microbodies, dictyosomes, autolytic vacuoles, exhibit progressive-rotary motion. The immunogold method demonstrated that microtubules and actin filaments of lipotubuloids might be connected with one another by myosin and kinesin. It was supposed that collaboration of motor proteins with actin filaments and microtubules makes autonomic high peripheral speed rotary motion of lipotubuloids in epidermis cells possible. Moreover, myosin was also detected in Golgi bodies in lipotubuloid. In lipotubuloids, the immunogold method demonstrated immunosignals after the use of an antibody to dynein light chains but spectroscopy mass analysis showed that in O. umbellatum epidermis lacked dynein heavy chains.  相似文献   

2.
Summary. General procedures of N-chloroacetylation of the representative 1-aminoalkylphosphonic acids (GlyP, AlaP, ValP, PglyP and PheP) are described. These 1-(N-chloroacetylamino)-alkylphosphonic acids were converted into the corresponding glycylphosphonodipeptides (Gly-AAP) and/or related N-alkylglycylphosphonodipeptides (MenGly-AAP) in the course of ammonolysis/aminolysis. Physico-chemical properties of synthesized 1-(N-chloroacetylamino)-alkylphosphonic acids and phosphonodipeptides are characterized. Authors’ address: Z. H. Kudzin, Institute of Chemistry, University of Łódź, Narutowicza 68, Łódź 91-136, Poland  相似文献   

3.
Microtubules in lipotubuloids of the Ornithogalum umbellatum stipule epidermis cells change their diameters depending on the motion of the cytoplasmic domains rich in microtubules and lipid bodies. Microtubules fixed during rotary and progressive motion of the lipotubuloids composed of the same number of protofilaments fall into two populations – wide (43–58 nm) and narrow (24–39 nm) in size. Following blockage of the motion with 2,4-dinitrophenol (DNP), the range of this diversity is smaller, microtubules become a medium-sized population (34–48 nm). When DNP is removed and the motion reactivated, 2 populations of microtubules reappear. Analysis of the structure of the microtubule wall revealed that changes in the microtubule diameters resulted from varying distances between the adjacent protofilaments, and stretching and compression of tubulin subunits in the protofilaments.A supposition has been put forward that the changes in the sizes of O. umbellatum microtubule diameters: 1) are connected with the interactions between microtubules and actin microfilaments lying along these microtubules; 2) can be the driving force of the rotary motion of lipotubuloids.  相似文献   

4.
Rybaczek D  Maszewski J 《Protoplasma》2007,230(1-2):31-39
Summary. Histone H2A variant H2AX is rapidly phosphorylated on the induction of DNA double-strand breaks by ionizing radiation and hydroxyurea-mediated replication arrest, resulting in the formation of γ-H2AX foci along megabase chromatin domains nearby the sites of incurred DNA damage. In an attempt to establish a relationship between species-specific nuclear architecture and H2AX phosphorylation in S/G2 phase-arrested root meristem cells, immunocytochemical comparisons using an antibody raised against human γ-H2AX were made among three plants differing with respect to DNA contents: Allium porrum, representing a reticulate type of DNA package, Vicia faba, having semireticulate cell nuclei, and Raphanus sativus, characterised by a chromocentric type of chromatin. Another approach was aimed at determining possible correlations between the extent of hydroxyurea-induced phosphorylation of H2AX histones and the quantities of root meristem cells induced by caffeine to enter aberrant mitotic division (premature chromosome condensation). It was concluded that the higher-order structure of chromatin may contribute to the accessibility of molecular factors engaged in the recognition and repair of genetic lesions. Consequently, in contrast to A. porrum and V. faba, a diffuse chromatin in chromocentric cell nuclei of R. sativus may become more vulnerable both to generate DNA double-strand breaks and to recruit molecular elements needed to arrange the cell cycle checkpoint functions, and thus, more resistant to factors which allow the cells to enter premature chromosome condensation spontaneously. On the other hand, however, caffeine-mediated overriding of the S-M checkpoint control system resulted in the typical appearance of premature chromosome condensation, irrespective of the genomic content of DNA. Correspondence and reprints: Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-231 Łódź, Poland.  相似文献   

5.
Summary Changes in the spatial relationship between actin filaments and microtubules during the differentiation of tracheary elements (TEs) was investigated by a double staining technique in isolatedZinnia mesophyll cells. Before thickening of the secondary wall began to occur, the actin filaments and microtubules were oriented parallel to the long axis of the cell. Reticulate bundles of microtubules and aggregates of actin filaments emerged beneath the plasma membrane almost simultaneously, immediately before the start of the deposition of the secondary wall. The aggregates of actin filaments were observed exclusively between the microtubule bundles. Subsequently, the aggregates of actin filaments extended preferentially in the direction transverse to the long axis of the cell, and the arrays of bundles of microtubules which were still present between the aggregates of actin filaments became transversely aligned. The deposition of the secondary walls then took place along the transversely aligned bundles of microtubules.Disruption of actin filaments by cytochalasin B produced TEs with longitudinal bands of secondary wall, along which bundles of microtubules were seen, while TEs produced in the absence of cytochalasin B had transverse bands of secondary wall. These results indicate that actin filaments play an important role in the change in the orientation of arrays of microtubules from longitudinal to transverse. Disruption of microtubules by colchicine resulted in dispersal of the regularly arranged aggregates of actin filaments, but did not inhibit the formation of the aggregates itself, suggesting that microtubules are involved in maintaining the arrangement of actin filaments but are not involved in inducing the formation of the regularly arranged aggregates of actin filaments.These findings demonstrate that actin filaments cooperate with microtubules in controlling the site of deposition of the secondary wall in developing TEs.Abbreviations DMSO dimethylsulfoxide - EGTA ethyleneglycolbis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - MSB microtubule-stabilizing buffer - PBS phosphate buffered saline - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - TE tracheary element  相似文献   

6.
Müller J  Menzel D  Samaj J 《Protoplasma》2007,230(3-4):231-242
Summary. The cytoskeleton in plant cells plays an important role in controlling cell shape and mediating intracellular signalling. However, almost nothing is known about the reactions of cytoskeletal elements to heat stress, which represents one of the major environmental challenges for plants. Here we show that living epidermal root cells of Arabidopsis thaliana could cope with short-term heat shock stress showing disruption and subsequent recovery of microtubules and actin microfilaments in a time-dependent manner. Time-lapse imaging revealed a very dynamic behavior of both cytoskeletal elements including transient depolymerization and disassembly upon heat shock (40–41 °C) followed by full recovery at room temperature (20 °C) within 1–3 h. Reaction of microtubules, but not actin filaments, to heat shock was dependent on cell type and developmental stage. On the other hand, recovery of actin filaments, but not microtubules, from heat shock stress was dependent on the same parameters. The relevance of this adaptive cytoskeletal behavior to intracellular signalling is discussed. Correspondence and reprints: Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, 53115 Bonn, Federal Republic of Germany.  相似文献   

7.
Pribyl P  Cepák V  Zachleder V 《Protoplasma》2005,226(3-4):231-240
Summary. The aim of the study was to elucidate the effect of cadmium ions on the arrangement of the actin and tubulin cytoskeleton, as well as the relationships between cytoskeletal changes and growth processes in the green filamentous alga Spirogyra decimina. Batch cultures of algae were carried out under defined conditions in the presence of various cadmium concentrations. In control cells, the cytoskeleton appeared to be a transversely oriented pattern of both microtubules and actin filaments of various thickness in the cell cortex; colocalization of cortical microtubules and actin filaments was apparent. Microtubules were very sensitive to the presence of cadmium ions. Depending on the cadmium concentration and the time of exposure, microtubules disintegrated into short rod-shaped fragments or they completely disappeared. A steep increase in cell width and a decrease in growth rate accompanied (and probably ensued) a very rapid disintegration of microtubules. Actin filaments were more stable because they were disturbed several hours later than microtubules at any cadmium concentration used. When cadmium ions were washed out, the actin cytoskeleton was rebuilt even in cells in which actin filaments were completely disintegrated at higher cadmium concentrations (40 or 100 μM). The much more sensitive microtubules were regenerated after treatment with lower cadmium concentrations (10 or 15 μM) only. Correspondence and reprints: Centre of Phycology, Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 379 82 Třeboň, Czech Republic.  相似文献   

8.
Summary The lipotubuloids ofOrnithogalum umbellatum consisting of osmiophilic granules surrounded by a system of microtubules move from one place to another within a cell by means of a progressive rotary motion.It was proved that the rotary motion of the lipotubuloids is autonomous, while their progressive motion depends on cyclosis. DNP causes cyclosis to stop earlier than does the rotary motion of the lipotubuloid. The peripheral speed of the rotating lipotubuloid reaches 31.4/sec and is 6.2 times faster than the maximum speed of the cytoplasmic motion.The diameter of microtubules in the lipotubuloids changes, and these changes are connected with the lipotubuloid motion. Those rotating at a speed of 60 to 360/sec consist of two equally numerous populations of microtubules:A) from 14 to 20 nm, andB) from 22 to 28 nm. In the lipotubuloids whose rotation is considerably slower, the great majority of microtubules are 14 to 20 nm in diameter, and the B population constitutes only 10%. The immobilization of the quickly rotating lipotubuloids through the action of DNP results in destruction of the two microtubule populations, so that only one population is present. This has intermediate diameters ranging from 16 to 24 nm. The removal of DNP restores the intense rotary motion of the lipotubuloids and brings about the reappearance of the population of microtubules ranging from 22 to 28 nm in diameter.The increase in microtubule diameters results most probably from shortening of the microtubules. It can be supposed that the contraction of microtubules is the source of the motive force responsible for the rotary motion of the lipotubuloids.  相似文献   

9.
A tissue-printing technique was used to follow distribution of lead ions in different organs of lupin seedling with the histological localization of pathogenesis-related proteins designated as PR-L1 to PR-L6, which were found to be induced in lupin roots by heavy metals (Przymusiński and Gwóźdź 1999). Lead nitrate solution was supplied to the root tips and the histological distribution of the metal in lupin organs was visualized by staining with 0.6 % (w/v) of sodium rhodizonate. As the distance from the site of lead application increased, the amount of free lead ions decreased and in the petioles the metal was not detected at all. Lead ions were localized mostly in vascular bundles, which suggests that it was transported into the upper parts of seedlings with the transpiration stream. Immunohistochemical analysis of the tissue prints showed that as compared to the control lead visibly increased the accumulation of the PR proteins in roots, hypocotyls, stems and leaf petioles of the lupin seedling. The histological distribution of the PR protein differs from that of lead, and was localized in parenchymatic cells of root cortex, hypocotyl and stem. It is worth noticing that the stress protein was also observed in the leaf petioles where lead was not detected. This fact as well as marked enhancement of PR (L1–L6) proteins accumulation in lead treated seedlings and our earlier studies (Przymusiński and Gwóźdź 1994, 1999, Przymusiński et al. 1995) suggests that these proteins could be elements of plant’s defence system against both biotic and abiotic stressing factors.  相似文献   

10.
In the cells of Haemanthus albiflos leaf epidermis there are structures containing lipids analogous to “elaioplasts” (Wakker in Jahrb F Wiss Bot 19:423–496, 1888). Ultrastructural analysis has shown that they are cytoplasmic domains—lipotubuloids, since they exhibit all the features of Ornithogalum umbellatum lipotubuloids. They are composed of numerous lipid bodies surrounded by microtubules, ER cisternae and vesicles, some mitochondria, Golgi structures, and microbodies. In the center of some lipotubuloids there are also autolytic vacuoles. Microtubules adjacent to H. albiflos lipid bodies were revealed only when taxol preincubation was used before fixing the epidermis in the mixture of glutaraldehyde and OsO4. The presence of tubulin in H. albiflos and O. umbellatum lipotubuloids was confirmed with use of the immunogold method involving antibodies against tubulin α. It is possible that the association of microtubules with lipid bodies may be more common than originally thought, but it is difficult to reveal due to the methodological problems.  相似文献   

11.
T. Noguchi  K. Ueda 《Protoplasma》1988,143(2-3):188-192
Summary Cortical microtubules and cortical microfilaments were visualized in cells ofMicrasterias pinnatifida treated by freeze-substitution, and the pattern of their distribution was reconstructed from serial sections. Most cortical microtubules accompanied the long microfilaments that ran parallel to the microtubules. Cortical microfilaments not accompanied by the microtubules were also found. They were short and slightly curved. Both types of cortical microfilament were not grouped into bundles, and were 6–7 nm in diameter, a value that corresponds to the diameter of filaments of F-actin.  相似文献   

12.
Summary The presence of polysaccharides connected with microtubules in the lipotubuloids of Ornithogalum umbellatum L. was detected by the silver hexamine method and Ruthenium Red staining. Polysaccharides are localized on the outer surface of microtubules. Staining of polysaccharides by Ruthenium Red causes an increase in the microtubule walls thickness by 2.5 nm and in their diameter by 4.5 nm.  相似文献   

13.
Formin family proteins coordinate actin filaments and microtubules. The mechanisms by which formins bind and regulate the actin cytoskeleton have recently been well defined. However, the molecular mechanism by which formins coordinate actin filaments and microtubules remains poorly understood. We demonstrate here that Isoform-Ib of the Formin-1 protein (Fmn1-Ib) binds to microtubules via a protein domain that is physically separated from the known actin-binding domains. When expressed at low levels in NIH3T3 fibroblasts, Fmn1-Ib protein localizes to cytoplasmic filaments that nocodazole disruption confirmed as interphase microtubules. A series of progressive mutants of Fmn1-Ib demonstrated that deletion of exon-2 caused dissociation from microtubules and a stronger association with actin membrane ruffles. The exon-2-encoded peptide binds purified tubulin in vitro and is also sufficient to localize GFP to microtubules. Exon-2 does not contain any known formin homology domains. Deletion of exon 5, 7, 8, the FH1 domain or FH2 domain did not affect microtubule binding. Thus, our results indicate that exon-2 of Fmn1-Ib encodes a novel microtubule-binding peptide. Since formin proteins associate with actin filaments through the FH1 and FH2 domains, binding to interphase microtubules through this exon-2-encoded domain provides a novel mechanism by which Fmn1-Ib could coordinate actin filaments and microtubules.  相似文献   

14.
Myosin-Va was identified as a microtubule binding protein by cosedimentation analysis in the presence of microtubules. Native myosin-Va purified from chick brain, as well as the expressed globular tail domain of this myosin, but not head domain bound to microtubule-associated protein-free microtubules. Binding of myosin-Va to microtubules was saturable and of moderately high affinity (approximately 1:24 Myosin-Va:tubulin; Kd = 70 nM). Myosin-Va may bind to microtubules via its tail domain because microtubule-bound myosin-Va retained the ability to bind actin filaments resulting in the formation of cross-linked gels of microtubules and actin, as assessed by fluorescence and electron microscopy. In low Ca2+, ATP addition induced dissolution of these gels, but not release of myosin-Va from MTs. However, in 10 microM Ca2+, ATP addition resulted in the contraction of the gels into aster-like arrays. These results demonstrate that myosin-Va is a microtubule binding protein that cross-links and mechanochemically couples microtubules to actin filaments.  相似文献   

15.
Myelin basic protein (MBP) is a multifunctional protein involved in maintaining the stability and integrity of the myelin sheath by a variety of interactions with membranes and other proteins. It assembles actin filaments and microtubules, can bind actin filaments and SH3-domains to a membrane surface, and may be able to tether them to the oligodendrocyte membrane and participate in signal transduction in oligodendrocytes/myelin. In the present study, we have shown that the 18.5 kDa MBP isoform can also bind microtubules to lipid vesicles in vitro. Phosphorylation of MBP at Thr94 and Thr97 (bovine sequence) by MAPK, and deimination of MBP (using a pseudo-deiminated recombinant form), had little detectable effect on its ability to polymerize and bundle microtubules, in contrast to the effect of these modifications on MBP-mediated assembly of actin. However, these modifications dramatically decreased the ability of MBP to tether microtubules to lipid vesicles. MBP and its phosphorylated and pseudo-deiminated variants were also able to bind microtubules to actin filaments. These results suggest that MBP may be able to tether microtubules to the cytoplasmic surface of the oligodendrocyte membrane, and that this binding can be regulated by post-translational modifications to MBP. We further show that MBP appears to be co-localized with actin filaments and microtubules in cultured oligodendrocytes, and also at the interface between actin filaments at the leading edge of membrane processes and microtubules behind them. Thus, MBP may also cross-link microtubules to actin filaments in vivo.  相似文献   

16.
The ATP.Mg-dependent type-1 protein phosphatase activating factor (factor FA) was identified as a brain protein kinase that could phosphorylate microtubule-associated protein-2 (MAP-2) and thereby inhibit cross-linking interactions of MAP-2 with actin filaments and microtubules isolated from porcine brain. The phosphorylation sites were found to be equally located on both projection and microtubule-binding domains of MAP-2. Phosphoamino acid analysis revealed that the phosphorylation sites were on both serine and threonine residues, indicating that factor FA is a serine/threonine-specific MAP-2 kinase. Conversely, factor FA was further identified as a MAP-2 phosphatase activator that could promote the dephosphorylation of32P-MAP-2 phosphorylated by factor FA itself and thereby potentiate cross-linking interactions of MAP-2 with actin and microtubules. Furthermore, the two opposing functions of factor FA can be selectively modulated in a reciprocal manner bypH change. For instance, alkalinepH could stimulate factor FA to work as a MAP-2 kinase but simultaneously block it to work as a MAP-2 phosphatase activator to potentiate the inhibition on the cross-linking interactions of MAP-2 with actin and microtubules. Taken together, the results provide initial evidence that a cyclic modulation of cross-linking interactions of MAP-2 with actin filaments and microtubules can be controlled by factor FA, representing an efficient cyclic cascade control mechanism for rapid structural and functional regulation of neuronal cytoskeletal system.  相似文献   

17.
Summary Distribution of microtubules and other cytoskeletal filaments in growing skeletal muscle cells (myotubes) was studied in vitro by fluorescence microscopy using fluorescin-labeled antibodies and phalloidin, a specific antiactin drug. In the distal elongating tips of myotubes, microtubules were the major cytoskeletal elements; actin and intermediate filaments were much less abundant. On the other hand, colcemidand nocodozole-treatments caused disruption of microtubules and also prompt retraction of growth tips to form myosacs, a type of deformed myotube. Actin filaments remained unaffected during the retraction. The difference in the distribution of the 3 cytoskeletal filaments in the region of growth tips was most remarkable in the case of those myotubes in the process of recovery from myosacs. In an early phase of recovery, the cellular processes extending from myosacs were enriched with both microtubules and intermediate filaments, but not with actin filaments. Later, when the processes became further developed, intermediate filaments were scarce at the extreme ends. Fluorescein-labeled actin introduced by a micro-injection method was minimally incorporated into filaments in the cellular processes. We conclude that microtubules make up the cytoskeletal element which is most responsible for elongation or spreading of growth tips of myotubes in vitro.  相似文献   

18.
Guidance molecules steer growth cones to their targets by attracting or repelling them. Turning in a new direction requires remodeling of the growth cone and bending of the axon. This depends upon reorganization of actin filaments and microtubules, which are the primary cytoskeletal components of growth cones. This article discusses how these cytoskeletal components induce turning. The importance of each component as well as how interactions between them result in axon guidance is discussed. Current evidence shows that microtubules are influenced by both the organization and dynamics of actin filaments in the peripheral domain of growth cones. Cytoskeletal models for repulsive and attractive turning are presented. Molecular candidates that may link actin filaments with microtubules are suggested and potential signal transduction pathways that allow these cytoskeletal components to affect each other are discussed.  相似文献   

19.
Neurodegenerative diseases may result in part from defects in motor-driven vesicle transport in neuronal cells. Myosin-V, an actin-based motor that is highly enriched in the brain, mediates the movement of vesicles on cortical actin filaments. Recent evidence suggests that the globular tail of myosin-V interacts with the microtubule-based motor, kinesin, to form a 'hetero-motor' complex on vesicles. The complex of these two motors, one microtubule-based and the other actin-based, facilitates the movement of vesicles from microtubules to actin filaments. Based on our studies of vesicle transport by these two motors in extracts of squid neurons, we hypothesize that one of the functions of the tail–tail interaction is to provide feedback between the two proteins to allow seamless transition of vesicles from microtubules to actin filaments. To study the interactions of the globular tail domain of myosin-V to kinesin and to neuronal vesicles, we used a GST-tagged globular tail fragment in motility assays. The MyoV tail fragment inhibited vesicle transport by 81–91% and thereby exhibited a dominant negative effect. These data show that the recombinant protein blocked the activity of native myosin-V presumably by binding to vesicles and competing away the native myosin-V motors. The GST-MyoV-tail fragment pulled down kinesin by immunoprecipitation from squid brain homogenates and therefore it exhibited binding properties of native myosin-V. These data show that the headless myosin-V fragment is an effective inhibitor of vesicle transport in cell extracts. These studies support the hypothesis that tail–tail interactions may be a mechanism for feedback between myosin-V and kinesin to allow transition of vesicles from microtubules to actin filaments. Acknowledgements: Supported by NSF grant MCB9974709.  相似文献   

20.
Summary This paper describes the role of actin filaments in setting up the phragmosome — the transvacuolar device that anticipates the division plane — and in forming a supracellular system that seems to override cell boundaries. Tradescantia leaf epidermal cells were induced to divide by wounding the leaf. New division planes formed parallel to slits, and encircled puncture wounds — the new division planes lining up across cells, instead of the joints being off-set as in normal, unwounded tissue. Within 30 min after wounding, rhodamine phalloidin staining showed that a belt of fine, cortical actin filaments formed parallel to the wound. In the next stage, migration of nuclei to a wall adjacent to the wound, involved pronounced association of actin filaments with the nucleus. Migration could be inhibited with cytochalasin D, confirming the role of actin in traumatotaxis. Later still, actin strands were seen to line up from cell to cell, parallel to the wound, anticipating the future division plane. Next, actin filaments accumulated in this anticlinal plane, throughout the depth of the cell, thereby contributing to the formation of the phragmosome. The phragmosome has been shown in previous work (Flanders et al. 1990) to contain microtubules that bridge nucleus to cortex, and is now found to contain actin filaments. Actin filaments are therefore involved in the key stages of nuclear migration and division plane alignment. The supracellular basis of actin alignment is discussed.Dedicated to the memory of Professor Oswald Kiermayer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号