首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Hogetsu 《Planta》1986,167(4):437-443
Immunofluorescence microscopy was used to examine the re-formation of microtubules (MT), after cold-induced depolymerization, in Closterium ehrenbergii. The C. ehrenbergii cells undergo cell division followed by semicell expansion in the dark period of daily light-dark cycles. Five types of MTs, namely the MT ring, hair-like MTs around the nuclei, spindle MTs, radially arranged MTs and transverse wall MTs, appeared and disappeared sequentially during and following cell division. The wall MTs were distributed transversely only in the expanding new semicells. When cells were chilled in ice water, wall MTs in expanding cells were fragmented, and then disappeared as did the other types of MTs, within 5 min. When cells were warmed at 20°C after 2 h chilling, wall MTs and the other types of MTs re-formed. At the early stage of wall-MT re-formation in expanding cells, small, star-like MTs were formed, and then randomly oriented MTs developed in both the expanding new and the old semicells. The MT ring was also re-formed at the boundary between the new and old semicells. There were no obvious MT-organizing centers in the random arrangement. As time passed, the randomly oriented wall MTs in the old semicells disappeared and those in the expanding new semicells gradually assumed a transverse orientation. These results indicate that wall MTs can be rearranged transversely after they have been re-formed and that nucleation of wall MTs is separable from the mechanism for ordering them.Abbreviations MT(s) microtubule(s) - MTOC(s) microtubule-organizing center(s)  相似文献   

2.
S. Kimura  S. Mizuta 《Planta》1994,193(1):21-31
The functions of the microtubule (MT) cytoskeleton in changing the orientation of microfibrils (MFs) in the cell walls of the coenocytic green alga Chaetomorpha moniligera Kjellman were investigated by electron microscopy. The cortical MT cytoskeleton in Chaetomorpha was comprised of longitudinally oriented MTs. Cellulose MFs, however, alternately changed their orientation longitudinally and transversely to form crisscross MF textures. Microtubules were parallel to longitudinally oriented MFs but never to those that were transversely oriented. The average density of MTs during the formation of longitudinally oriented MFs was 216 per 50 m of wall and that of transversely oriented MFs 170/50 m. To determine exactly the MT-density dependency of each MF orientation, changes in MF orientation were examined by changing MT density after treating and removing amiprophos-methyl (APM). Microtubules were reduced in number by a half (100/50 m) after 2 h and by 3/4 (50/50 m) after 3 h of treatment with APM (3 mM). This reduction was caused by the disappearance of alternating MTs. Microtubules retained this density (50/ 50 m) up to 6 h, and then gradually disappeared within 24 h. Microfibril orientation in the innermost cell wall was transverse after treatment with APM for 2 h but was helicoidal after 6 h. Polymerization of MTs occurred in the longitudinal direction following the removal of APM after treatment for 48 h. Microtubule density rose to about 100/50 m and 200/50 m after 6 h and 24 h, respectively. The orientation of MTs changed from helicoidal to transverse and transverse to longitudinal after 6 h and 24 h, respectively. When APM was removed prior to formation of the helicoidal texture, longitudinally oriented MFs appeared within 6 h. There is thus an alternating cycle of formation of longitudinally and transversely oriented MFs within a 12-h period. Formation of transversely oriented MFs as a result of APM treatment started in the middle of a cell as hoops which then extended in the apical and basal directions. Formation of longitudinally oriented MFs as a result of the removal of APM started from the apical end and proceeded toward the base. It follows from these results that: (1) the point of formation of longitudinally oriented MFs differs from that for transversely oriented MFs, (2) MF orientation in each case depends on a separately functioning mechanism, (3) MT density changes rhythmically to trigger a switch for crisscross orientation of MFs.Abbreviations APM amiprophos-methyl - MF microfibril - MT microtubule - TC terminal complex We thank Dr. K. Okuda for making helpful discussion and Miss. T. Matsuki for assistance with replica preparation.  相似文献   

3.
The stability and ordered assembly of cytoskeletal microtubules(MTs) and the relationship between cell growth and MT cytoskeletonin the coenocytic green alga, Chaetomorpha moniligera Kjellmanwere examined. The cytoplasm of cylindrical growing cells ofChaetomorpha is covered with dense arrays of longitudinallyarranged cortical MTs which constitute the MT cytoskeleton.Seventy-five percent of MTs of the cytoskeleton disappearedwithin 4 h, with 25% remaining after 20 h following cold treatment.On terminating MT assembly with amiprophos-methyl (APM), thenumber of MTs decreased by 75% within 4 h. The remaining MTsdisappeared gradually within 24 h. The MT cytoskeleton of Chaetomorphawould thus appear to be composed of at least two kinds of MTsdiffering in stability. The MT cytoskeleton returned to normalafter treatment with APM for less than 48 h. However, this didnot occur after treatment with APM for more than 48 h, and theMT arrays became random. Cell elongation ceased completely within24 h after treatment with APM for less than 48 h but was restoredwithin 24 h after removing APM. The restoration of cell elongationwas no longer evident after removaI of APM for more than 48h. The results indicate that assembly of MTs into ordered arraysdepends on cell polarity and that in turn cell elongation isdependent on the polar-dependent arrays of MTs.Copyright 1994,1999 Academic Press Cell polarity, Chaetomorpha moniligera, coenocytic green alga, cold treatment, immunofluorescence, microtubule  相似文献   

4.
Microtubule dynamics are involved in stomatal movement ofVicia faba L.   总被引:5,自引:0,他引:5  
R. Yu  R.-F. Huang  X.-C. Wang  M. Yuan 《Protoplasma》2001,216(1-2):113-118
Summary To obtain a full picture of microtubule (MT) behavior during the opening and closure of guard cells we have microinjected living guard cells ofVicia faba with fluorescent tubulin, examined fine detail by freeze shattering fixed cells, and used drug treatments to confirm aspects of MT dynamics. Cortical MTs in fully opened guard cells are transversely oriented from the ventral wall to the dorsal wall. When the stomatal aperture was decreased by darkness, these MTs became twisted and patched and broken down into diffuse fragments when stomata were closed. When the closed stomata were opened in response to light, the MTs in guard cells changed from the diffused, transitional pattern back to one in which MTs are transversely oriented from stomatal pore to dorsal wall. This observation indicates a linkage between these MT changes and stomatal movement. To confirm this, we used the MT-stabilizing agent taxol and the MT-depolymerizing herbicide oryzalin and observed their effects on the stomatal aperture and MT dynamics. Both drugs suppressed light-induced stomatal opening and dark-induced closure. MTs are known to be necessary for maintaining the static kidney shape of guard cells; the present data now show that the dynamic properties of polymeric tubulin accompany changes in shape with stomatal movement and may be functionally involved in stomatal movement.  相似文献   

5.
Microtubules (MTs) of cells of Spirogyra sp. were depolymerized by treatment with amiprophos-methyl (APM) for 1 h and then reorganized in 0.30 M mannitol solution. The reorganized MTs after 1.5 h incubation showed an oblique/longitudinal orientation and then became transversely oriented as the incubation was prolonged. During this incubation, the osmotic pressure of cells was measured by the plasmolysis method. The cell osmotic pressure increased with time. The calculated turgor pressure at 1.5 h was 0.11 M (mannitol equivalent) and, at 13.5 h, 0.25 M. Similar changes in MT orientation and recovery of the turgor pressure were also observed in 0.30 M sorbitol solution. These results suggest that the MT orientation may be correlated with the turgor pressure. Among fresh water algae sensitive to a saline environment, this Spirogyra was the first species shown to have a turgor regulating mechanism, although the recovery of turgor pressure was incomplete. The recovery of turgor pressure in mannitol solutions was also observed without APM treatment.  相似文献   

6.
The dynamics of microtubule (MT) disassembly and reassembly were studied in the green alga Ernodesmis verticillata, using indirect immunofluorescent localization of tubulin. This alga possesses two distinct MT arrays: highly-ordered, longitudinally-oriented cortical MTs, and shorter perinuclear MTs radiating from nuclear surfaces. Perinuclear MTs are very labile, completely disassembling in the cold (cells on ice) within 5–10 min or in 25 μM amiprophos-methyl (APM) within 15–30 min. Although cortical MTs are generally absent after 3 h in APM, it takes 45–60 min before any cold-induced depolymerization is apparent, and some cortical MTs persist after 6 h of cold treatment. The extent of immunofluorescence of cytoplasmic (depolymerized?) tubulin is inversely proportional to the abundance of cortical MTs. Recovery of MT arrays upon warming or upon removal of APM occurs within 30–60 min for the perinuclear MTs, but the cortical arrays take much longer to regain their normal patterns. The cortical MTs initially reappear in a random distribution with respect to the cell axis, but within 3–4 d of warming (or 24–36 h of removing APM) they are nearly parallel to each other and to the cell's longitudinal axis. Thus, although the timing differs, the actual patterns of depolymerization and recovery are similar, irrespective of whether physical or chemical agents are used. Longer-term treatments in 1 μM APM indicate that despite the rapid disappearance of perinuclear MTs, a loss of the uniform nuclear spacing occurs gradually over 1–6 d. Similar disorganization of nuclei is obtained with long-term treatment with 1 μM taxol, where a gradual loss of perinuclear MTs is accompanied by an increased abundance of mitotic spindles. This implies that perinuclear MTs can disassemble in vivo in the presence of taxol, and that they are not the sole components involved in maintaining nuclear spacing in these coenocytes. The results indicate that both nuclear and cortical sites of MT nucleation may exist in this organism, and that MT reassembly and re-organization are temporally distinct events in cells that have highly-ordered arrays of long MTs.  相似文献   

7.
The arrangement of wall microtubules (MTs) in Pisum sativumroots was viewed immunofluorescently using cryosectioning. Mostcells in the tip region of pea roots (0–2 mm from tip)had wall MTs arranged transversely to the root axis. In theregion elongating at a higher rate (2–4 mm), wall MTsof epidermal, cortical and stelar cells were all transverselyarranged. In the region of about 5 mm from the tip, in whichcell elongation had already ceased, wall MTs in cortical cellschanged from a transverse to an oblique arrangement in relationto the root axis. Some cells had a crossed arrangement of wallMTs, which was interpreted as representing two sets of unidirectional,oblique wall MTs in opposite cell cortices of a single cell.This change was completed within a region of 1-mm width. Sinceroots elongated at a rate of 0.6 mm h–1, it means thatthe arrangement of wall MTs changed within 2 h. An oblique arrangementof wall MTs was also observed in stelar cells. As the cellsaged, the oblique arrangement tended to change to a steeperor even a longitudinal one. (Received January 24, 1986; Accepted May 15, 1986)  相似文献   

8.
Burk DH  Ye ZH 《The Plant cell》2002,14(9):2145-2160
It has long been hypothesized that cortical microtubules (MTs) control the orientation of cellulose microfibril deposition, but no mutants with alterations of MT orientation have been shown to affect this process. We have shown previously that in Arabidopsis, the fra2 mutation causes aberrant cortical MT orientation and reduced cell elongation, and the gene responsible for the fra2 mutation encodes a katanin-like protein. In this study, using field emission scanning electron microscopy, we found that the fra2 mutation altered the normal orientation of cellulose microfibrils in walls of expanding cells. Although cellulose microfibrils in walls of wild-type cells were oriented transversely along the elongation axis, cellulose microfibrils in walls of fra2 cells often formed bands and ran in different directions. The fra2 mutation also caused aberrant deposition of cellulose microfibrils in secondary walls of fiber cells. The aberrant orientation of cellulose microfibrils was shown to be correlated with disorganized cortical MTs in several cell types examined. In addition, the thickness of both primary and secondary cell walls was reduced significantly in the fra2 mutant. These results indicate that the katanin-like protein is essential for oriented cellulose microfibril deposition and normal cell wall biosynthesis. We further demonstrated that the Arabidopsis katanin-like protein possessed MT-severing activity in vitro; thus, it is an ortholog of animal katanin. We propose that the aberrant MT orientation caused by the mutation of katanin results in the distorted deposition of cellulose microfibrils, which in turn leads to a defect in cell elongation. These findings strongly support the hypothesis that cortical MTs regulate the oriented deposition of cellulose microfibrils that determines the direction of cell elongation.  相似文献   

9.
Inada  S.  Sato  S. 《Plant and Soil》2000,226(1):117-128
In actively growing cortical cells in the elongation zone of Lemna minor L. roots, both longitudinal (radial and tangential) and transverse walls expand in both length and width. The longitudinal walls of the three types of cortical cells in the root (i.e. outer, middle and inner) showed the largest expansion in the longitudinal axis. In contrast, the inner cortical cells exhibited the least expansion in width, whereas the middle cortical cells displayed the largest expansion in width. Thus, the profiles of the expansion of longitudinal walls were characteristic for the three types of cortical cells. In this study, both the orientation of cortical microtubule (MT) arrays and their dynamic reorientation, and the density of cortical MTs, were documented and correlated to the patterns of cell wall expansion. Significantly, transverse arrays of cortical MTs were most prominent in the radial walls of the inner cortical cells, and least so in those of the middle cortical cells. Toward the base of roots, beyond the elongation zone, the orientation of cortical MTs shifted continuously from transverse to oblique and then to longitudinal. In this case, the rate of shift in the orientation of cortical MTs along the root axis was appreciably faster in the middle cortical cells than in the other two types of cortical cells. Interestingly, the continuous change in cortical MT orientation was not confirmed in the transverse walls which showed much smaller two-dimensional expansion than the radial walls. Additionally, the presence of fragmented or shortened cortical MTs rapidly increased concomitantly with the decrease of transversely oriented cortical MTs. This relationship was especially prominent in the transverse walls of the inner cortical cells, which displayed the least expansion among the three types of cortical cells investigated. In the root elongation zone, the density of cortical MTs in the inner cortical cells was about three times higher than that in the other two cortical cell types. These results indicate that in the early stage of cell expansion, the orientation of cortical MTs determines a preferential direction of cell expansion and both the shifting orientation and density of cortical MTs affect the magnitude of expansion in width of the cell wall.  相似文献   

10.
The reorganization of microtubules (MTs) from cytokinesis tointerphase was examined in protonemal cells of the fern Adiantumcapillus-veneris. During the reorganization, many MTs fannedout from the nuclear envelope towards the cell periphery. Newlyformed cortical MTs were located only near the nucleus and werearranged randomly. The randomly arranged cortical MTs were thenreplaced by an interphase array of cortical MTs that were orientedpredominantly parallel to the cell axis. At the boundary betweenthe new and the old cell wall, clusters of MTs were observedafter the formation of cortical MTs. Re-formation of MTs after depolymerization of MTs was also examined.Clusters of short MTs appeared only at the nuclear envelopewhen MTs had been depolymerized by exposure of cells to 100µM propyzamide at 0°C. Few MTs were formed at theboundary between the new and old cell walls. These results suggestthat, even in fern cells, the nuclear envelope might act asMT-organizing center during the establishment of the interphasearray of MTs. (Received June 21, 1995; Accepted January 23, 1996)  相似文献   

11.
Re-formation of the preprophase band (PPB) of microtubules (MTs)after cold-induced depolymerization of MTs was investigatedin protonemal cells of the fern, Adiantum capiilus-veneris L.When protonemata with a PPB were chilled at 0?C, MTs of thePPB depolymerized within 5 min leaving only a few fragmentsof MTs, and all such fragments were disrupted within 2 h afterthe onset of cold treatment. When cells were chilled for 5 minand then rewarmed at 25 ?C, the transverse MTs of the PPB graduallyincreased in number in the region of the PPB and re-formationof the PPB was accomplished within 20 min. In contrast, whencells chilled for 2 h were rewarmed, randomly oriented MTs appearedinitially and then a PPB with a low density of MTs became apparent.The PPB re-formed even when the nucleus and most of the endoplasmhad been displaced from the region of the PPB by centrifugation(2,800 ?g, 15 min). These results suggest that MTs of the PPBnucleate and are organized in the cortical cytoplasm duringre-formation of the PPB after disruption. (Received June 27, 1991; Accepted August 15, 1991)  相似文献   

12.
Summary Cortical microtubules (MTs) were visualized in root cortex cells ofHyacinthus orientalis L. using immunofluorescence techniques. Cellular MT orientation was determined adjacent to radial longitudinal and transverse walls of root tip, uncontracted, contracting, and fully contracted regions. As seen in longitudinal views, MTs formed parallel, apparently helical arrays which were oriented transversely, axially or obliquely depending upon the region. Transverse sectional views showed that MTs adjacent to transverse cell walls formed a variety of patterns which varied with developmental stage and cell location. Microtubules were oriented in crisscross or parallel arrays. The parallel arrays were oriented either parallel, perpendicular or oblique to the radius of the root. There was an apparent temporal progression in MT reorientation from outer cortical to inner cortical cell layers. A resultant progression of reoriented cell growth could account for root contraction. These findings corroborate earlier electron microscopic observations of changing MT orientation accompanying root contraction, and provide cytological evidence to test mathematical and biophysical models of the mechanics of cell expansion.Abbreviations MT microtubule - MF microfibril - MTSB microtubule stabilizing buffer - PBS phosphate buffered saline  相似文献   

13.
蚕豆气孔运动中脱落酸对周质微管排列的影响   总被引:5,自引:1,他引:4  
气孔由一对保卫细胞组成,且其壁具有不均一加厚的特性(图1),并能敏感地感受内、外环境信号而调节K~ 等渗透调节物质进出保卫细胞引起膨压变化,从而控制气孔的大小、调节植物体与外界环境所进行的水分和气体交换。进一步研究发现,以K~ 为主的渗透调节物质引起的膨压变化受到许多因子的调控,如ABA可以中介Ca~(2 )作用抑制K~ 内向通道或直接作用于K~ 外向通道使K~ 外流,但ABA影响K~ 通道的信号转导途径仍是一个有待进一步探索的课题。大量研究表明,细胞运动与细胞骨架有关。如丝瓜卷须的卷曲运动、胞质环流、花粉管萌发与伸长、含羞草的感震性运动,以及细胞器的运动等都与细胞骨架有关。我们用植物微管特异性解聚剂——甲基胺草磷(APM)以及微丝专一性抑制剂——细胞松驰素B(CB)预处理蚕豆开放或关闭气孔后可明显地抑制Ca~(2 )、ABA、光、K~ 等引起的气孔运动,表明微管、微丝可能参与调节气孔的运动过程。Couot-Gastelier和Louguet经电镜观察证  相似文献   

14.
C. J. Hogan 《Protoplasma》1987,138(2-3):126-136
Summary A monoclonal antibody to higher plant tubulin was used to trace microtubule (MT) structures by immunofluorescence throughout mitosis and meiosis in two angiosperms,Lycopersicon esculentum andOrnithogalum virens. Root tip cells showed stage specific MT patterns typical of higher plant cells. These included parallel cortical interphase arrays oriented perpendicular to the long axis of the cell, preprophase band MTs in late interphase through prophase, barrelshaped spindles, and finally phragmoplasts. Pollen mother cell divisions exhibited randomly oriented cortical MT arrays in prophase I, pointed spindles during karyokinesis, and elongate phragmoplasts. A preprophase band was not observed in either meiotic division. MT initiation sites were seen as broad zones associated with the nuclear envelope.  相似文献   

15.
Summary Examination was made of the structure and assembly of the cortical microtubule (MT) cytoskeleton in the coenocytic green algaBoodlea coacta (Dickie) Murray et De Toni by immunofluorescence microscopy. Cortical MTs inBoodlea protoplasts are arranged randomly but some show a meridional arrangement within 6 h after protoplast formation. At 6–9 h such MTs become highly concentrated and parallel to each other in certain areas. At 12 h the concentration is uniformly high throughout the cell, indicating the completion of high density meridional arrangement of cortical MTs. Cortical MTs exhibiting a high density, meridional arrangement show characteristic disassembly by treatment with 10 M amiprophos-methyl (APM) or cold treatment (0 °C). Disassembly occurs by each MT unit at positions skipping 30–40 m in the transverse direction, and neighboring MTs subsequently disassemble to form MT groups. Each group becomes slender and then disappears completely within the following 24 h. The meridional arrangement of cortical MTs is disrupted by N-ethylmaleimide (NEM) accompanied by a remarkable reduction in density. The remaining MTs form groups at 30–40 m intervals from each other, as also occurs with drug or cold treatment, but disruption and density return to normal levels following removal of NEM. It appears that there are meridionally oriented channels, anchor-rich and anchor-poor, in the plasma membrane. The channels could be distributed alternately and anchors could be deposited in a cross-linking manner with cortical MTs to form a stable cortical MT-cytoskeleton. MTs comprising the cortical MT cytoskeleton could be oriented by meridionally oriented channels of anchors which are distributed following establishment of cell polarity.Abbreviations APM amiprophos-methyl - MT microtubule - MTOC microtubule organizing center - NEM N-ethylrnaleimide  相似文献   

16.
The relationship between the dwarf habit of growth and corticalmicrotubule (MT) orientation as affected by gibberellin wasexamined using a gibberellin responding dwarf mutant of Zeamays L. (d5). The 4 mm portion of the mesocotyl below the coleoptilarnode of dark-grown seedlings was divided into four 1 mm segments.MTs were observed by means of immunofluorescence microscopyon the tangential surface of the epidermal cells (EP-t), theradial surfaces of epidermal (EP-r) and cortex cells (C-r) inboth normal and d5 seedlings. MT arrangement in EP-t was transverse,oblique and/or longitudinal. In lower regions, cells with transverselyoriented MTs decreased, while those with obliquely/longitudinallyoriented MTs increased. The frequency of the occurrence of transverselyoriented MTs was much higher in normal than in d5. In EP-r almostall the cells of the four regions had transversely orientedMTs. In d5 seedlings only a few percent of cells had obliquelyoriented MTs. In C-r all the cells of the four regions of normalseedlings had transversely oriented MTs, while in d5, 20% ofthe uppermost region cells showed oblique/longitudinal orientationand more in lower regions. By GA3 (100µM) treatment for24 h, the growth of d5 mesocotyls was stimulated, and the orientationof MTs in EP-t, EP-r and C-r of any regions became transverse. 1Present address: Department of Forestry, Faculty of Agriculture,the University of Tokyo, Yayoi-1-Chome, Bunkyo-ku, Tokyo, 113Japan (Received August 16, 1990; Accepted January 22, 1991)  相似文献   

17.
Jan Marc  Barry A. Palevitz 《Planta》1990,182(4):626-634
The organization of microtubules (MTs) in the cortex of cells at interphase is an important element in morphogenesis. Mechanisms controlling the initiation of MTs and their spatial ordering, however, are largely unknown. Our recent study concerning the generation of a radial array of MTs in stomatal guard cells inAllium showed that the MTs initiate in a cortical MT-organizing zone adjacent to the ventral wall separating the two young guard cells (Marc, Mineyuki and Palevitz, 1989, Planta179, 516, 530). In an attempt to detect MT-ordering mechanisms separate from the sites of MT initiation, we now employ various drugs to manipulate the geometry and integrity of the ventral wall and thereby also the associated MT-organizing zone. In the presence of cytochalasin D the ventral wall is tilted away from its normal mid-longitudinal anticlinal alignment, while treatments with the herbicide chloroisopropyl-N-phenylcarbamate (CIPC) induce the formation of a branched ventral wall. Nonetheless, in either case the MTs still form a radial array, although this is asymmetric as it is centered in accordance with the misaligned or branched ventral wall. Since the MTs maintain their original course undisturbed as they extend beyond the abnormal ventral wall, there is no evidence for the presence of an inherent MT-ordering mechanism at locations remote from MT-initiation sites. Following treatments with caffeine, which abolishes the formation of the ventral wall, the MTs revert to a transversely oriented cylindrical array as in normal epidermal cells. Thus the presence of the ventral wall, and presumably also the associated MT-organizing zone, is essential for the establishment of the radial array. The MT-organizing zone is therefore involved not only in the initiation of MTs, but also in determining their spatial order throughout the cell cortex. We thank Drs. Richard J. Cyr and Yoshi Mineyuki for providing valueable suggestions during the course of this work, and Ms. Elizabeth Bruce printing some of the figures. This research was supported by Funds from the National Science Foundation grants DCB-8703292 to B.A.P. and DCB-8803286 to B.A.P. and J.M.  相似文献   

18.
Yoshida K  Inoue N  Sonobe S  Shimmen T 《Protoplasma》2003,221(3-4):227-235
Summary.  Some species of Spirogyra form rosette-shaped or rod-shaped rhizoids in the terminal cell of the filaments. In the present study, we analyzed an involvement of microtubules (MTs) in rhizoid differentiation. Before rhizoid differentiation, cortical MTs were arranged transversely to the long axis of cylindrical cells, reflecting the diffuse growth. At the beginning of rhizoid differentiation, MTs were absent from the extreme tip of the terminal cell. In the other area of the cell, however, MTs were arranged transversely to the long axis of the cell. In the fully differentiated rosette-shaped rhizoid, MTs were randomly organized. However, at a younger stage of rosette-shaped rhizoids, MTs were sometimes arranged almost transversely in the lobes of the rosette. In the rod-shaped rhizoid, MTs were arranged almost transversely. MT-destabilizing drugs (oryzalin and propyzamide) induced swelling of rhizoids, and neither rosette-shaped nor rod-shaped rhizoids were formed. The role of MTs in rhizoid differentiation was discussed. Received June 17, 2002; accepted November 11, 2002; published online April 8, 2003 RID="*" ID="*" Correspondence and reprints: Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Harima Science Park City, Hyogo 678-1297, Japan.  相似文献   

19.
In differentiating sieve elements of Aegilops comosa var. thessalicadictyosomes are abundant and they produce numerous smooth vesicles.Coated vesicles seem to bud from smooth ones. Since both kindsof vesicles appear both in the cytoplasm and in associationwith the plasmalemma, it is proposed that they move to and fusewith the plasmalemma transferring products for cell wall synthesis.During differentiation sub-plasmalemmal microtubules are initiallyscarce and randomly oriented but soon afterwards they becomenumerous and transversely oriented to the long axis. Cellulosemicrofibrils in the cell wall appear to run parallel to themicrotubules and the latter may regulate microfibril orientation. Root protophloem sieve elements develop wave-like wall thickenings,which are, during development, overlaid by microtubules perpendicularto the long axis. Just after maturation these thickenings progressivelybecome smooth and finally the walls appear uniform in thickness.The wave-like wall thickenings may function as stored wall material,utilized in later stages of development when wall material willbe needed and its synthesis will be impossible because of theabsence of a synthesizing mechanism in the highly degraded protoplastsof mature sieve elements. It is suggested that in this way thethickenings may enable root protophloem sieve elements to growand keep pace with the active clongation of the surroundingcells. Aegilops comosa var. thessalica, sieve elements. cell wall, microtubules, dictyosomes, coated vesicles, wave-like thickenings  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号