首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenylate cyclase in cultured human fibroblasts is activated by prostaglandin E1 (PGE1) or beta-adrenergic agonists, e.g., isoproterenol, and inhibited by muscarinic agonists. Incubation with PGE1 reduced adenylate cyclase responsiveness to both PGE1 and isoproterenol; this so-called heterologous desensitization is believed to result from impaired function of the stimulatory guanyl nucleotide-binding protein of the cyclase complex. The effect of heterologous desensitization by PGE1 on inhibition of adenylate cyclase by the muscarinic agonist oxotremorine was examined. Muscarinic inhibition of basal and isoproterenol-stimulated cAMP accumulation was attenuated following exposure to PGE1; the concentration of oxotremorine required for half-maximal inhibition of cAMP accumulation was increased. In both intact cells and membrane preparations the number of binding sites for [3H]scopolamine, a muscarinic antagonist, was unaltered by desensitization. Following exposure to PGE1, receptor affinity for oxotremorine, assessed by competition with [3H] scopolamine, and the guanyl nucleotide sensitivity of agonist binding were reduced. The amount of inhibitory guanyl nucleotide-binding regulatory protein available for [32P]ADP-ribosylation by pertussis toxin was unaltered by desensitization. Thus, heterologous desensitization of adenylate cyclase with the stimulatory agonist PGE1 alters sensitivity to inhibitory as well as stimulatory ligands.  相似文献   

2.
Changes in functional responsiveness of spinal opioid receptors in monoarthritic rats were investigated at the behavioral and the molecular level. After intrathecal administration of morphine, D-Ala2-D-Leu5-enkephalin (DADLE), D-Pen2-D-Pen5-enkephalin (DPDPE) and dynorphin monoarthritic rats showed an enhanced antinociceptive response as measured by a tail-flick latency. No such changes were observed following administration of the selective kappa agonists U50,488H and U69,593. The opioid mu and delta receptor agonists (0.1-1.0 microM) inhibited the basal, as well as the forskolin-stimulated cAMP formation in spinal cord slices obtained from monoarthritic rats, whereas no significant changes were found in control animals. Higher concentrations of the mu and delta opioid receptor agonists were required to attenuate the cAMP level in spinal cord of control animals. The selective kappa agonists U50,488H and U69,593 did not influence the cAMP formation in monoarthritic or control animals. Additionally, we found that the GppNHp-stimulated level of cAMP was higher in the spinal cord slices of monoarthritic rats, which points to an enhanced responsiveness of the adenylate cyclase effector system to the action of this GTP analog. Our data suggest that the enhanced antinociceptive response to intrathecally administered opioids in monoarthritic rats may be connected with the increased sensitivity of adenylate cyclase to the inhibitory effects of mu and delta agonists.  相似文献   

3.
The aim of the present study has been to characterize the regulation by opiates of 45Ca2+ influx in rat spinal cord-dorsal root ganglion cocultures. We have demonstrated that K+-induced depolarization, in the presence of the Ca2+ channel agonist Bay K8644, stimulated Ca2+ influx (3-4-fold) via the dihydropyridine class of voltage-dependent Ca2+ channels. While mu and delta opiates had no effect, kappa opiate agonists (e.g. U50488, dynorphin) profoundly depressed the stimulated Ca2+ influx (86% inhibition at 100 microM U50488). The kappa agonist action was stereospecific and could be reversed by the opiate antagonist naloxone. The inhibition produced by kappa agonists was greatly diminished following pertussis toxin treatment, and this effect was accompanied by toxin-induced ADP-ribosylation of a 40-41-kDa protein. This suggests that kappa opiate receptors are negatively coupled to voltage-dependent Ca2+ channels, via a pertussis toxin-sensitive GTP-binding protein. Basal 45Ca2+ uptake, stimulated by adenylate cyclase activators (forskolin and cholera toxin), was potently inhibited by kappa opiates suggesting that, under conditions of neurohormonal stimulation of adenylate cyclase, kappa receptors are coupled to Ca2+ channels indirectly via the adenylate cyclase complex. In addition, cAMP-independent coupling pathways may also be involved.  相似文献   

4.
Adenosine, acting via A1 adenosine receptors, can inhibit adenylate cyclase activity in adipocytes. To assess the effects of chronic adenosine agonist exposure on the A1 adenosine receptor system of adipocytes, rats were infused with (-)-phenylisopropyladenosine or vehicle for 6 days and membranes were prepared. Basal as well as isoproterenol-, sodium fluoride-, and forskolin-stimulated adenylate cyclase activities were significantly increased (approximately 2-fold) in membranes from treated animals. (-)-Phenylisopropyladenosine-mediated inhibition of forskolin-stimulated adenylate cyclase activity was significantly (p = 0.0001) attenuated in membranes from treated rats (20.1 +/- 2.1% inhibition) versus controls (31.6 +/- 2.3% inhibition). Prostaglandin E1-induced inhibition of forskolin-stimulated adenylate cyclase activity was also attenuated: 11.7 +/- 3.6 versus 23.2 +/- 4.6% (p = 0.001). Using the A1 adenosine receptor agonist radioligand (-)-N6-(3-[125I]iodo-4-hydroxyphenylisopropyl)adenosine, 32% fewer high affinity binding sites were detected in membranes from treated animals (p less than 0.04). Photoaffinity labeling with N6-2-(3-[125I]iodo-4-azidophenyl)ethyladenosine revealed no gross difference in receptor structure. The number of beta-adrenergic receptors as well as the percentage of receptors in the high affinity state as assessed by (-)-3-[125I]iodocyanopindolol binding were the same in both groups. In membranes from treated rats, the amount of [alpha-32P]NAD incorporated by pertussis toxin into the alpha subunit of the inhibitory guanine nucleotide regulatory protein (Ni) was decreased by 37 +/- 11%. Concurrently, the quantity of label incorporated by cholera toxin into the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Ns) was increased by 44 +/- 14% in treated membranes. Finally, the capacity of Ns solubilized from treated membranes to stimulate adenylate cyclase activity when reconstituted into cyc- S49 lymphoma cell membranes was enhanced by approximately 50% compared to control. Thus, heterologous desensitization, manifested by a diminished capacity to inhibit adenylate cyclase and an enhanced responsiveness to stimulatory effectors, can be induced in the A1 adenosine receptor-adenylate cyclase system of adipocytes. A decrease in Ni alpha subunit concomitant with an increase in Ns alpha subunit quantity and activity may represent the biochemical mechanism of desensitization in this system.  相似文献   

5.
Prostaglandin E (PGE) receptor density in hepatic plasma membranes can be down-regulated by in vivo exposure to the 16,16-dimethyl analog of PGE2, and this is associated with desensitization of PGE-sensitive adenylate cyclase. These studies examined adenylate cyclase response to other agonists in membranes whose PGE receptor density was 51% decreased and whose maximal PGE-stimulated adenylate cyclase activity was 31% decreased. Down-regulated membranes had a 37% decrease in their maximal response to glucagon, indicating that treatment with the PGE analog had induced both homologous and heterologous desensitization. To determine whether adenylate cyclase had been affected, stimulation with NaF, guanyl 5'-yl imidodiphosphate (GppNHp), and forskolin was examined in both intact and solubilized membranes. Intact membranes had decreased adenylate cyclase responses to all three stimulators (NaF, -41%; GppNHp, -25%; forskolin, -41%) as did solubilized membranes (NaF, -51%; GppNHp, -50%; forskolin, -50%), suggesting alterations in adenylate cyclase rather than indirect membrane effects. Cholera toxin activation and labeling were examined to more directly assess whether the guanine nucleotide (G/F) regulatory component of adenylate cyclase had been affected. Cholera toxin activation was 42% less in down-regulated membranes, and these membranes incorporated less label when the incubation was performed in the presence of [32]NAD. Solubilized G/F subunit activity from down-regulated membranes was less effective in reconstitution of adenylate cyclase activity from cyc- cell membranes than G/F activity from control membranes. These data indicate that in vivo exposure to the PGE analog causes both homologous and heterologous desensitization of adenylate cyclase as well as an apparent quantitative decrease in G/F.  相似文献   

6.
In hepatocytes obtained from hypothyroid rats, phorbol myristate acetate (PMA) and vasopressin diminished the accumulation of cyclic AMP and the stimulation of ureagenesis induced by isoprenaline or glucagon without altering significantly the accumulation of cyclic AMP induced by forskolin. Pretreatment with PMA markedly reduced the stimulation of ureagenesis and the accumulation of cyclic AMP induced by isoprenaline or glucagon. In membranes from cells pretreated with PMA, the stimulation of adenylate cyclase induced by isoprenaline + GTP, glucagon + GTP or by Gpp[NH]p were clearly diminished as compared to the control, whereas forskolin-stimulated activity was not affected. The data indicate heterologous desensitization of adenylate cyclase. It was also observed that the homologous (García-Sáinz J.A. and Michel, B. (1987) Biochem. J. 246, 331-336) and this heterologous beta-adrenergic desensitizations were additive. Pertussis toxin treatment markedly reduced the heterologous desensitization of adenylate cyclase but not the homologous beta-adrenergic desensitization. It is concluded that the homologous and heterologous desensitizations involve different mechanisms. The homologous desensitization seems to occur at the receptor level, whereas the heterologous probably involves the guanine nucleotide-binding regulatory protein, Ns.  相似文献   

7.
In hepatocytes obtained from hypothyroid rats, phorbol myristate acetate (PMA) and vasopressin diminished the accumulation of cyclic AMP and the stimulation of ureagenesis induced by isoprenaline or glucagon without altering significantly the accumulation of cyclic AMP induced by forskolin. Pretreatment with PMA markedly reduced the stimulation of ureagenesis and the accumulation of cyclic AMP induced by isoprenaline or glucagon. In membranes from cells pretreated with PMA, the stimulation of adenylate cyclase induced by isoprenaline + GTP, glucagon + GTP or by Gpp[NH]p were clearly diminished as compared to the control, whereas forskolin-stimulated activity was not affected. The data indicate heterologous desensitization of adenylate cyclase. It was also observed that the homologous (García-Sáinz J.A. and Michel, B. (1987) Biochem. J. 246, 331–336) and this heterologous β-adrenergic desensitizations were additive. Pertussis toxin treatment markedly reduced the heterologous desensitization of adenylate cyclase but not the homologous β-adrenergic desensitization. It is concluded that the homologous and heterologous desensitizations involve different mechanisms. The homologous desensitization seems to occur at the receptor level, whereas the heterologous probably involves the guanine nucleotide-binding regulatory protein, Ns.  相似文献   

8.
Long-term (18 h) activation of 5-HT1A receptors alters 5-HT1A receptor-G protein coupling and leads to heterologous sensitization of adenylate cyclase. In contrast, the effects of short-term (2 h) 5-HT1A receptor activation on subsequent adenylate cyclase activity have not been determined. The present study examined and characterized 5-HT1A receptor-induced heterologous sensitization following short-term activation in CHO-5-HT1A cells. Short-term activation of 5-HT1A receptors with full agonists, as well as the partial agonist, buspirone, markedly enhanced subsequent forskolin-stimulated cyclic AMP accumulation. This heterologous sensitization was evident after 30 min treatment with 5HT and appeared to be near maximal following 2 h agonist treatment. Sensitization was characterized by a dose-dependent increase in forskolin-stimulated cyclic AMP accumulation and was prevented by WAY 100635 or by pertussis toxin treatment. The ability of the 5-HT1A agonists to induce heterologous sensitization was not significantly altered by agents shown previously to modulate 5-HT1A-mediated inhibition of cyclic AMP accumulation.  相似文献   

9.
将突触体膜与佛波脂(PMA),GABAB受体激动剂巴氯芬(Baclofen,BAL)预孵育一定时间后BAL对腺苷酸环化酶(AC)基础活性及forskolin刺激的AC活性的抑制率显著降低,而forskolin预孵育时,BAL对基础及forskolin刺激的AC活性的抑制率不变,表明GABAB受体与AC偶联环节的脱敏机制涉及蛋白激酶激活。而与蛋白激酶A无关,脱敏时GABAB受体的Kd值增加,本 实验  相似文献   

10.
The inhibition of forskolin-stimulated adenylate cyclase activity by 5-hydroxytryptamine (5-HT) receptor agonists was measured in rat hippocampal membranes isolated from animals treated with vehicle or islet-activating protein (IAP; pertussis toxin). In vehicle-treated animals, 5-HT, 8-hydroxy-2-(di-n-propylamino)tetralin, buspirone, and gepirone were potent in inhibiting forskolin-stimulated adenylate cyclase activity with EC50 values of 60, 76, 376, and 530 nM, respectively. IAP treatment reduced by 30-55% the 5-HT1A agonist inhibition of adenylate cyclase activity via 5-HT1A receptors. The data indicate that the inhibitory guanine nucleotide-binding protein or Go (a similar GTP-binding protein of unknown function purified from brain) mediates the 5-HT1A agonist inhibition of hippocampal adenylate cyclase.  相似文献   

11.
The beta-adrenergic receptor kinase is a cytosolic enzyme that specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor (beta AR). Beta AR kinase appears to be translocated from the cytosol to the plasma membrane when kin- S49 lymphoma cells are incubated with either beta-adrenergic agonists or prostaglandin E1, both of which act through receptors which stimulate adenylate cyclase. We report here that brief (approximately 20 min) exposure of wild type S49 lymphoma cells to somatostatin (which inhibits adenylate cyclase) promotes the translocation of beta AR kinase to an extent comparable to that observed in the presence of the beta agonist isoproterenol or prostaglandin E1. Beta AR kinase activity can be measured using either beta AR or rhodopsin, the retinal receptor for light, as a substrate. The translocation process triggered by somatostatin is rapid, reversible, and is associated with somatostatin receptor desensitization. The latter is apparent as an attenuation of the inhibition by somatostatin of forskolin-stimulated adenylate cyclase activity in membranes of S49 cells preincubated in the presence of the peptide. These results strongly suggest that beta AR kinase is able to phosphorylate and desensitize both stimulatory and inhibitory adenylate cyclase-coupled receptors, thus emerging as a general kinase that regulates the function of different receptors in an agonist-specific fashion.  相似文献   

12.
Hypothyroidism is associated with an enhanced sensitivity of rat fat cells to the inhibitory action of adenosine and adenosine agonists. The sensitivity of the forskolin-stimulated cyclic AMP response of rat fat cells to the adenosine agonist N6-phenylisopropyladenosine is amplified 3-fold by hypothyroidism. Forskolin-stimulated adenylate cyclase activity is more sensitive to inhibition by this adenosine agonist in membranes of fat cells isolated from hypothyroid as compared to euthyroid rats. Hypothyroidism does not significantly alter the number of affinity of binding sites for N6-cyclohexyl[3H]adenosine or N6-phenylisopropyladenosine in membranes of rat fat cells. GTP-induced inhibition of forskolin-stimulated adenylate cyclase was markedly enhanced in the hypothyroid state, suggesting an alteration in the inhibitory regulatory component (Ni)-mediated control of adenylate cyclase. Incubating membranes with [alpha-32P]NAD+ and preactivated pertussis toxin results in the radiolabeling of two peptides with Mr = 40,000 and 41,000 as visualized in autoradiograms of polyacrylamide gels run in sodium dodecyl sulfate. The amount of label incorporated by pertussis toxin into these two peptides (putative subunits of Ni) per mg of protein of membrane is increased 2-3-fold in the hypothyroid state. The amount of the stimulatory regulatory component, Ns, in fat cell membranes is not altered by hypothyroidism (Malbon, C. C., Graziano, M. P., and Johnson, G. L. (1984) J. Biol. Chem. 259, 3254-3260). The amplified response of hypothyroid rat fat cells to the inhibitory action of adenosine appears to reflect a specific increase in the activity and abundance of Ni.  相似文献   

13.
L-Histidine and imidazole (the histidine side chain) significantly increase cAMP accumulation in intact LLC-PK1 cells. This effect is completely inhibited by isobutylmethylxanthine (IBMX). Histidine and imidazole stimulate cAMP phosphodiesterase activity in soluble and membrane fractions of LLC-PK1 cells suggesting that the IBMX-sensitive effect of these agents to stimulate cAMP formation is not due to inhibition of cAMP phosphodiesterase. Histidine and imidazole but not alanine (the histidine core structure) increase basal, GTP-, forskolin-, and AVP-stimulated adenylate cyclase activity in LLC-PK1 membranes. Two other amino acids with charged side chains (aspartic and glutamic acids) increase AVP-stimulated but neither basal- nor forskolin-stimulated adenylate cyclase activity. This suggests that multiple amino acids with charged side chains can regulate selected aspects of adenylate cyclase activity. To better define the mechanism of histidine regulation of adenylate cyclase, membranes were detergent-solubilized which prevents histidine and imidazole potentiation of forskolin-stimulated adenylate cyclase activity and suggests that an intact plasma membrane environment is required for potentiation. Neither pertussis toxin nor indomethacin pretreatment alter imidazole potentiation of adenylate cyclase. IBMX pretreatment of LLC-PK1 membranes also prevents imidazole to potentiate adenylate cyclase activity. Since IBMX inhibits adenylate cyclase coupled adenosine receptors, LLC-PK1 cells were incubated in vitro with 5'-N-ethylcarboxyamideadenosine (NECA) which produced a homologous pattern of desensitization of NECA to stimulate adenylate cyclase activity. Despite homologous desensitization, histidine and imidazole potentiation of adenylate cyclase was unaltered. These data suggest that histidine, acting via an imidazole ring, potentiates adenylate cyclase activity and thereby increases cAMP formation in cultured LLC-PK1 epithelial cells. This potentiation requires an intact plasma membrane environment, occurs independent of a pertussis toxin-sensitive substrate and of products of cyclooxygenase, and is inhibited by IBMX. This IBMX-sensitive pathway does not involve either inhibition of cAMP phosphodiesterase activity or a stimulatory adenosine receptor coupled to adenylate cyclase.  相似文献   

14.
Many cells develop enhanced adenylate cyclase activity after prolonged exposure to drugs that acutely inhibit the enzyme and it has been suggested that this adaptation may be due to an increase in Gs alpha. We have treated wild-type and Gs alpha-deficient cyc- S49 mouse lymphoma cells with a stable analogue (SMS 201-995) of the inhibitory agonist somatostatin. After incubation with SMS for 24 h, the forskolin-stimulated cAMP synthetic rate in intact cyc- cells was increased by 76%, similar to the increase found in the wild-type cells. Forskolin-stimulated adenylate cyclase activity in the presence of Mn2+ was also increased in membranes prepared from SMS-treated cyc- cells; however, guanine nucleotide-mediated inhibition of adenylate cyclase activity was not changed despite a small decrease in inhibitory Gi alpha subunits detected by immunoblotting. Pretreatment of cyc- cells with pertussis toxin prevented SMS from inducing the enhancement of forskolin-stimulated cAMP accumulation in intact cells. After chronic incubation of cyc- cells with SMS, exposure to N-ethylmaleimide, which abolished receptor-mediated inhibition of cAMP accumulation, did not attenuate the enhanced rate of forskolin-stimulated cAMP synthesis compared to N-ethylmaleimide-treated controls. These results with cyc- cells demonstrate that an adaptive increase in adenylate cyclase activity induced by chronic treatment with an inhibitory drug can occur in the absence of expression of Gs alpha.  相似文献   

15.
Opiate agonists inhibit adenylate cyclase in brain membranes, but under normal conditions the maximal inhibition is small (10-15%). When rat brain membranes were preincubated at pH 4.5, washed, and then assayed for adenylate cyclase at pH 7.4, stimulation of activity by agents (fluoride, guanylyl-5'-imidodiphosphate, cholera toxin) that act through the stimulatory GTP-binding coupling protein (Gs) protein was lost. At the same time, inhibition of basal adenylate cyclase by opiate agonists was increased to a maximum of 30-40%. Opiate inhibition was maximal at low magnesium concentrations (less than 5 mM), required guanine nucleotides, and decreased the Vmax, not Km, of the enzyme. Incubation of membranes with pertussis toxin lowered the apparent affinity for agonists in inhibiting activity. The delta opioid agonists were more potent than mu agonists, and the Ke values for naloxone in blocking agonist inhibition were similar for both mu and delta agonists (50-90 nM). These results suggest that inhibition of adenylate cyclase in brain is not mediated by mu opiate receptors, but whether classic high-affinity delta and kappa receptors are involved with this enzyme cannot be confirmed by these experiments.  相似文献   

16.
Extracellular cAMP induces the activation of adenylate cyclase in Dictyostelium discoideum cells. Conditions for both stimulation and inhibition of adenylate cyclase by guanine nucleotides in membranes are reported. Stimulation and inhibition were induced by GTP and non-hydrolysable guanosine triphosphates. GDP and non-hydrolysable guanosine diphosphates were antagonists. Stimulation was maximally twofold, required a cytosolic factor and was observed only at temperatures below 10 degrees C. An agonist of the cAMP-receptor-activated basal and GTP-stimulated adenylate cyclase 1.3-fold. Adenylate cyclase in mutant N7 could not be activated by cAMP in vivo; in vitro adenylate cyclase was activated by guanine nucleotides in the presence of the cytosolic factor of wild-type but of not mutant cells. Preincubation of membranes under phosphorylation conditions has been shown to alter the interaction between cAMP receptor and G protein [Van Haastert (1986) J. Biol. Chem. in the press]. These phosphorylation conditions converted stimulation to inhibition of adenylate cyclase by guanine nucleotides. Inhibition was maximally 30% and was not affected by the cytosolic factor involved in stimulation. In membranes obtained from cells that were treated with pertussis toxin, adenylate cyclase stimulation by guanine nucleotides was as in control cells, whereas inhibition by guanine nucleotides was lost. When cells were desensitized by exposure to cAMP agonists for 15 min, and adenylate cyclase was measured in isolated membranes, stimulation by guanine nucleotides was lost while inhibition was retained. These results suggest that Dictyostelium discoideum adenylate cyclase may be regulated by Gs-like and Gi-like activities, and that the action of Gs but not Gi is lost during desensitization in vivo and by phosphorylation conditions in vitro.  相似文献   

17.
We have examined the cell-free heterologous desensitization of adenylyl cyclase in plasma membrane preparations from S49 wild-type (WT) and kin- cells (which lack cAMP-dependent protein kinase) incubated with purified catalytic subunit of cAMP-dependent protein kinase (cA.PKc). cA.PKc caused a rapid (t1/2 = 40 s) decrease in the hormone responsiveness of adenylyl cyclase in the WT membrane preparations that mimicked the intact cell heterologous desensitization; that is, there was an increase in the Kact for both epinephrine and prostaglandin E1 (PGE1) stimulations of adenylyl cyclase induced at the receptor level because neither forskolin- nor NaF-stimulated activity was affected. The desensitization was independent of agonist occupancy of the receptor, and the effects were blocked both by the active fragment (amino acids 5-22) of the specific inhibitor of cA.PK and by p[NH]ppA. cA.PKc treatment of kin- membranes resulted in a heterologous desensitization that resembled the effects of WT adenylyl cyclase, with the exception that forskolin-stimulated activity was also reproducibly decreased by 24%. cA.PKc had no effect on WT membranes isolated from cells that had previously undergone maximal heterologous desensitization during treatment with 10 microM forskolin. In contrast, cA.PKc-induced heterologous desensitization of kin- membranes was additive with the epinephrine-induced homologous desensitization of intact cells. Cell-free desensitizations were reversed by incubation of membranes with cA.PKc and ADP, conditions that drive the kinase reaction backward. The similarities of our cell-free cA.PKc-mediated heterologous desensitization of adenylyl cyclase with the intact cell desensitization support our hypothesis that heterologous desensitization of the WT lymphoma cells is mediated by cA.PK via a mechanism independent of homologous desensitization.  相似文献   

18.
Densensitization of turkey erythrocytes by exposure to the beta-adrenergic agonist (-)isoproterenol leads to decreased activation of adenylate cyclase by agonist, NaF, and guanyl-5'-yl imido diphosphate, with no reduction in the number of beta-adrenergic receptors. Interactions between the receptor and the guanine nucleotide regulatory protein (N protein) also seem to be impaired. These observations suggest that a component distal to the beta-adrenergic receptor may be a locus of modification. Accordingly we examined the N protein to determine whether it was altered by desensitization. The rate at which (-)isoproterenol stimulated the release of [3H]GDP from the N protein was substantially lower in membranes prepared from desensitized cells, providing further evidence for uncoupling of the receptor and the N protein. The amount of N protein in membranes from control and desensitized cells was compared by labeling the 42,000 Mr component of the N protein with [32P]NAD+ and cholera toxin; no significant difference was found. However, significantly more N protein (p less than .001) was solubilized by cholate extraction of desensitized membranes, suggesting an altered association of the N protein with the membrane after desensitization. The functional activity of the N protein was measured by reconstitution of cholate extracts of turkey erythrocyte membranes into S49 lymphoma cyc- membranes. Reconstitution of (-)isoproterenol stimulation of adenylate cyclase activity was reduced significantly (p less than .05) after desensitization. These observations suggest that desensitization of the turkey erythrocyte by (-)isoproterenol results in functional modifications of the guanine nucleotide regulatory protein, leading to impaired interactions with the beta-adrenergic receptor and reduced activation of adenylate cyclase.  相似文献   

19.
Chronic ingestion of ethanol, which produced tolerance and physical dependence, resulted in altered function of the cerebral cortical beta-adrenergic receptor-coupled adenylate cyclase system in mice. Although there was no change in basal adenylate cyclase activity, or in the activity of the digitonin-solubilized catalytic unit, stimulation of adenylate cyclase activity by the nonhydrolyzable guanine nucleotide analog guanylylimidodiphosphate [Gpp(NH)p] was reduced in brains of ethanol-fed animals. Ethanol added in vitro increased adenylate cyclase activity, and this enhancement, in the presence of Gpp(NH)p, was also reduced in cortical membranes of ethanol-fed mice. Furthermore, the maximal response to isoproterenol was decreased, and the EC50 for isoproterenol stimulation of adenylate cyclase activity was increased in ethanol-fed animals. The results are consistent with a qualitative or quantitative defect in the function of the stimulatory guanine nucleotide-binding protein (Ns), as well as in the beta-adrenergic receptor, after chronic ethanol exposure. In part, these changes appear to be similar to those that occur during heterologous desensitization of various receptor systems, and may be associated with dependence on or tolerance to ethanol.  相似文献   

20.
Preincubation of pigeon erythrocyte plasma membranes with the catalytic subunit of cAMP-dependent protein kinase results in the desensitization of erythrocyte adenylate cyclase. The adenylate cyclase activity measured in the presence of 10 microM isoproterenol and 50 microM GTP-gamma-S decreases by 40% after 10 min incubation; that in the presence of 50 microM GTP-gamma-S by 35% (20 min). The decrease of the adenylate cyclase activity is due to the prolongation of the lag phase of the enzyme activation in the presence of a hydrolysis-resistant GTP analog and to the drop in activity in the steady state of the activation. The heterologous desensitization of adenylate cyclase induced by cAMP-dependent protein kinase is also coupled with the decrease of the number of beta-adrenoreceptors capable of acquiring a high affinity for the agonists in the absence of guanyl nucleotides. The effect of the catalytic subunit on adenylate cyclase is fully compatible with the process of the enzyme desensitization in erythrocytes treated with isoproterenol or cAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号