首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the different types of methionine-derived aliphatic glucosinolates (GS), sinigrin (2-propenyl), the final product in 3C GS biosynthetic pathway is considered very important as it has many pharmacological and therapeutic properties. In Brassica species, the candidate gene regulating synthesis of 3C GS remains ambiguous. Earlier reports of GSL-PRO, an ortholog of Arabidopsis thaliana gene At1g18500 as a probable candidate gene responsible for 3C GS biosynthesis in B. napus and B. oleracea could not be validated in B. juncea through genetic analysis. In this communication, we report the isolation and characterization of the gene CYP79F1, an ortholog of A. thaliana gene At1g16410 that is involved in the first step of core GS biosynthesis. The gene CYP79F1 in B. juncea showed presence-absence polymorphism between lines Varuna that synthesizes sinigrin and Heera virtually free from sinigrin. Using this presence-absence polymorphism, CYP79F1 was mapped to the previously mapped 3C GS QTL region (J16Gsl4) in the LG B4 of B. juncea. In Heera, the gene was observed to be truncated due to an insertion of a ~4.7 kb TE like element leading to the loss of function of the gene. Functional validation of the gene was carried out through both genetic and transgenic approaches. An F2 population segregating only for the gene CYP79F1 and the sinigrin phenotype showed perfect co-segregation. Finally, genetic transformation of a B. juncea line (QTL-NIL J16Gsl4) having high seed GS but lacking sinigrin with the wild type CYP79F1 showed the synthesis of sinigrin validating the role of CYP79F1 in regulating the synthesis of 3C GS in B. juncea.  相似文献   

2.
Tocopherols are essential micronutrients for humans and animals, with several beneficial effects in plants. Among cereals, only maize grains contain high concentrations of tocopherols. In this investigation we analyzed, during 2004 and 2005, by high-performance liquid chromatography (HPLC), a population of 233 recombinant inbred lines (RIL) which were derived from two diverse parents and had extremely variable tocopherol content and composition. A genetic map was constructed using 208 polymorphic molecular markers including gene-targeted markers based on six candidate genes of the tocopherol biosynthesis pathway (HPPD, VTE1, VTE3, VTE4, P3VTE5, and P4VTE5). Thirty-one quantitative trait loci (QTL) associated with quantitative variation of tocopherol content and composition were identified by composite interval mapping (CIM); these were located on sixteen genomic regions covering all the chromosomes except chromosome 4. Most (65%) QTL were co-located, suggesting that in some cases the same QTL predominantly affected the amounts of more than one tocopherol. Two candidate genes, HPPD and VTE4 showed co-localization with major QTL for tocopherol content and composition whereas only one interval (umc1075–umc1304) on chromosome eight exhibited a QTL for α, δ, γ, and total tocopherols with high LOD and PVE values. The candidate genes associated with tocopherol content and with composition, especially VTE4 and HPPD, could be precisely used for alteration of the tocopherol content and composition of maize grains by development of functional markers. Other identified major QTL especially those on chromosomes 8, 1, and 2 (near candidate gene VTE5) can also be used for improvement of maize grain quality by marker-assisted selection.  相似文献   

3.
Wheat preharvest sprouting (PHS) occurs when seed germinates on the plant before harvest resulting in reduced grain quality. In wheat, PHS susceptibility is correlated with low levels of seed dormancy. A previous mapping of quantitative trait loci (QTL) revealed a major PHS/seed dormancy QTL, QPhs.cnl-2B.1, located on wheat chromosome 2B. A comparative genetic study with the related grass species rice (Oryza sativa L.) and Brachypodium distachyon at the homologous region to the QPhs.cnl-2B.1 interval was used to identify the candidate genes for marker development and subsequent fine mapping. Expressed sequence tags and a comparative mapping were used to design 278 primer pairs, of which 22 produced polymorphic amplicons that mapped to the group 2 chromosomes. Fourteen mapped to chromosome 2B, and ten were located in the QTL interval. A comparative analysis revealed good macrocollinearity between the PHS interval and 3 million base pair (mb) region on rice chromosomes 7 and 3, and a 2.7-mb region on Brachypodium Bd1. The comparative intervals in rice were found to contain three previously identified rice seed dormancy QTL. Further analyses of the interval in rice identified genes that are known to play a role in seed dormancy, including a homologue for the putative Arabidopsis ABA receptor ABAR/GUN5. Additional candidate genes involved in calcium signaling were identified and were placed in a functional protein association network that includes additional proteins critical for ABA signaling and germination. This study provides promising candidate genes for seed dormancy in both wheat and rice as well as excellent molecular markers for further comparative and fine mapping.  相似文献   

4.
5.
6.
Using an in silico cloning approach, five putative maize pentatricopeptide repeat (PPR)-containing protein genes (PPR-814a, PPR-814b, PPR-814c, PPR-816, PPR-817) with complete open reading frames were identified in the inbred line S-Mo17Rf3Rf3. The amino acid sequence indicated that these genes encoded mitochondrially targeted proteins containing repeats of a 35-aa PPR motif. The genes were mapped into the interval umc1525–bnlg1520 on chromosome 2. In a non-restoring genotype, we identified three homologous genes that contained deletions or nucleotide substitutions in the coding region. Sequence analysis revealed that one of the three genes (PPR-814a, PPR-814b, PPR-814c) could be considered a candidate restorer gene for S male sterility cytoplasm, and linkage analysis demonstrated that the genes co-segregated with the fertility restorer gene Rf3.  相似文献   

7.
目的:加密油菜控制硫甙性状QTL区间,并进行QTL整合预测候选基因。方法:利用生物信息学方法根据已知测序的白菜BAC序列信息设计引物,在油菜TN DH群体中进行多态性扩增和定位,并根据加密后构建的遗传连锁图重新检测QTL,进行QTL整合。结果:将根据白菜BAC设计的3对多态性标记成功定位到油菜控制硫甙性状QTL区间,进行QTL整合后将QTL置信区间进一步缩小,并判定了初步的候选基因。结论:充分利用白菜已测序的BAC或者基因组信息,将能加快油菜基础研究的步伐。  相似文献   

8.
Winterhardiness has three primary components: photoperiod (day length) sensitivity, vernalization response, and low temperature tolerance. Photoperiod and vernalization regulate the vegetative to reproductive phase transition, and photoperiod regulates expression of key vernalization genes. Using two barley mapping populations, we mapped six individual photoperiod response QTL and determined their positional relationship to the phytochrome and cryptochrome photoreceptor gene families and the vernalization regulatory genes HvBM5A, ZCCT-H, and HvVRT-2. Of the six photoreceptors mapped in the current study (HvPhyA and HvPhyB to 4HS, HvPhyC to 5HL, HvCry1a and HvCry2 to 6HS, and HvCry1b to 2HL), only HvPhyC coincided with a photoperiod response QTL. We recently mapped the candidate genes for the 5HL VRN-H1 (HvBM5A) and 4HL VRN-H2 (ZCCT-H) loci, and in this study, we mapped HvVRT-2, the barley TaVRT-2 ortholog (a wheat flowering repressor regulated by vernalization and photoperiod) to 7HS. Each of these three vernalization genes is located in chromosome regions determining small photoperiod response QTL effects. HvBM5A and HvPhyC are closely linked on 5HL and therefore are currently both positional candidates for the same photoperiod effect. The coincidence of photoperiod-responsive vernalization genes with photoperiod QTL suggests vernalization genes should also be considered candidates for photoperiod effects.  相似文献   

9.
By use of newly developed subcongenic strains of mice from a parental B6.129-Il10−/− knockout/congenic strain, we have narrowed the critical region for a new behavioral QTL, called Emo4, for open-field activity to a segment of Chromosome 1 between Erbb4 (68.4Mb) and B3gnt7 (86.2 Mb). We have also uncovered an additional QTL governing repetitive beam breaks in the open field. This QTL, called Reb1, maps to the interval between Asb1 (91.4 Mb) and NM_172851 (100.0 Mb) and is one of the first QTLs mapped for this type of behavior. Genome-wide microarray expression analyses were then undertaken to help to identify candidate genes that may be the cause of these genetic differences in open-field performance. In this effort, we analyzed global gene expression differences in the amygdalae by use of Affymetrix GeneChips between B6, B6.129-Il10−/−, and B6.129R4. Several probe sets representing target Chr 1 genes were found that showed significantly differential expression in the subcongenic and congenic strains. Several candidate genes have been identified. One of these regions coincides with an homologous region in humans that has been associated with autism, a disease whose symptoms include repetitive actions. This study illustrates that the use of congenic strains combined with global gene expression analyses can produce a list of viable candidates. It further shows that caution should be observed when analyzing the effects of knockout/congenic strains because many of the gene expression differences in these comparisons could not be attributable to the ablated Il10 gene but rather to passenger gene effects.  相似文献   

10.
In the past 15 years, the quantitative trait locus (QTL) mapping approach has been applied to crosses between different inbred mouse strains to identify genetic loci associated with plasma HDL cholesterol levels. Although successful, a disadvantage of this method is low mapping resolution, as often several hundred candidate genes fall within the confidence interval for each locus. Methods have been developed to narrow these loci by combining the data from the different crosses, but they rely on the accurate mapping of the QTL and the treatment of the data in a consistent manner. We collected 23 raw datasets used for the mapping of previously published HDL QTL and reanalyzed the data from each cross using a consistent method and the latest mouse genetic map. By utilizing this approach, we identified novel QTL and QTL that were mapped to the wrong part of chromosomes. Our new HDL QTL map allows for reliable combining of QTL data and candidate gene analysis, which we demonstrate by identifying Grin3a and Etv6, as candidate genes for QTL on chromosomes 4 and 6, respectively. In addition, we were able to narrow a QTL on Chr 19 to five candidates.  相似文献   

11.
Maize tassel inflorescence architecture is relevant to efficient production of F1 seed and yield performance of F1 hybrids. The objectives of this study were to identify genetic relationships among seven measured tassel inflorescence architecture traits and six calculated traits in a maize backcross population derived from two lines with differing tassel architectures, and identify Quantitative Trait Loci (QTL) involved in the inheritance of those tassel inflorescence architecture traits. A Principal Component (PC) analysis was performed to examine relationships among correlated traits. Traits with high loadings for PC1 were branch number and branch number density, for PC2 were spikelet density on central spike and primary branch, and for PC3 were lengths of tassel and central spike. We detected 45 QTL for individual architecture traits and eight QTL for the three PCs. For control of inflorescence architecture, important QTL were found in bins 7.02 and 9.02. The interval phi034—ramosa1 (ral) in bin 7.02 was associated with six individual architecture trait QTL and explained the largest amount of phenotypic variation (17.3%) for PC1. Interval bnlg344–phi027 in bin 9.02 explained the largest amount of phenotypic variation (14.6%) for PC2. Inflorescence architecture QTL were detected in regions with candidate genes fasciated ear2, thick tassel dwarf1, and ral. However, the vast majority of QTL mapped to regions without known candidate genes, indicating positional cloning efforts will be necessary to identify these genes.  相似文献   

12.
Two recent studies have mapped QTLs associated with the level of seed glucosinolates in oilseed rape (Brassica napus L.). It was likely that the two most significant QTLs identified in each study were the same, as they were linked to RFLP alleles identified by common DNA probes. To investigate the utility of these probes in breeding programmes, they were used to study RFLPs in a range of low- and high-glucosinolate cultivars and breeding lines. It was shown that all low glucosinolate spring and winter cultivars possessed a specific RFLP fragment identified by probe wg3f7 which is linked to theGSL-1 QTL, and all high-glucosinolate cultivars possessed a specific RFLP fragment identified by probe wg7a8, which is linked to theGSL-2 QTL. Cultivar Ariana, which has intermediate levels of glucosinolates possessed the low-glucosinolate fragment atGSL-1 but the high-glucosinolate fragment atGSL-2. A similar result was found with the cvs. Martina and Bronowski which have intermediate and variable levels of glucosinolates. There were no other RFLP fragments identified by other DNA probes which were specific to either the low- or high-glucosinolate phenotypes. The use of probes wg3f7 and wg7a8 in selection of low-glucosinolate lines in breeding programmes is discussed.  相似文献   

13.
Methylthioalkylmalate (MAM) synthases and their associated genes that have been extensively investigated in Arabidopsis control the side-chain elongation of methionine during the synthesis of aliphatic glucosinolates. A Brassica homolog of the Arabidopsis MAM genes was used in this study to analyze the role of MAM genes in B. napus through RNA interference (RNAi). The silencing of the MAM gene family in B. napus canola and B. napus rapeseed resulted in the reduction of aliphatic glucosinolates and total glucosinolate content. The results indicated that RNAi has potential for reducing glucosinolate content and improving meal quality in B. napus canola and rapeseed cultivars. Interestingly, MAM gene silencing in B. napus significantly induced the production of 2-propenyl glucosinolate, a 3-carbon side-chain glucosinolate commonly found in B. juncea mustard. Most transgenic plants displayed induction of 2-propenyl glucosinolate; however, the absolute content of this glucosinolate in transgenic B. napus canola was relatively low (less than 1.00 μmol g−1 seed). In the high glucosinolate content progenies derived from the crosses of B. napus rapeseed and transgenic B. napus canola, MAM gene silencing strongly induced the production of 2-propenyl glucosinolate to high levels (up to 4.45 μmol g−1 seed).  相似文献   

14.
Oil content and oil quality fractions (viz., oleic, linoleic and linolenic acid) are strongly influenced by the erucic acid pathway in oilseed Brassicas. Low levels of erucic acid in seed oil increases oleic acid content to nutritionally desirable levels, but also increases the linoleic and linolenic acid fractions and reduces oil content in Indian mustard (Brassica juncea). Analysis of phenotypic variability for oil quality fractions among a high-erucic Indian variety (Varuna), a low-erucic east-European variety (Heera) and a zero-erucic Indian variety (ZE-Varuna) developed by backcross breeding in this study indicated that lower levels of linoleic and linolenic acid in Varuna are due to substrate limitation caused by an active erucic acid pathway and not due to weaker alleles or enzyme limitation. To identify compensatory loci that could be used to increase oil content and maintain desirable levels of oil quality fractions under zero-erucic conditions, we performed Quantitative Trait Loci (QTL) mapping for the above traits on two independent F1 doubled haploid (F1DH) mapping populations developed from a cross between Varuna and Heera. One of the populations comprised plants segregating for erucic acid content (SE) and was used earlier for construction of a linkage map and QTL mapping of several yield-influencing traits in B. juncea. The second population consisted of zero-erucic acid individuals (ZE) for which, an Amplified Fragment Length Polymorphism (AFLP)-based framework linkage map was constructed in the present study. By QTL mapping for oil quality fractions and oil content in the ZE population, we detected novel loci contributing to the above traits. These loci did not co-localize with mapped locations of the fatty acid desaturase 2 (FAD2), fatty acid desaturase 3 (FAD3) or fatty acid elongase (FAE) genes unlike those of the SE population wherein major QTL were found to coincide with mapped locations of the FAE genes. Some of the new loci identified in the ZE population could be detected as ‘weak’ contributors (with LOD < 2.5) in the SE population in which their contribution to the traits was “masked” due to pleiotropic effects of erucic acid genes. The novel loci identified in this study could now be used to improve oil quality parameters and oil content in B. juncea under zero-erucic conditions.  相似文献   

15.
We constructed a 1,257-marker, high-density genetic map of Brassica oleracea spanning 703 cM in nine linkage groups, designated LG1–LG9. It was developed in an F2 segregating population of 143 individuals obtained by crossing double haploid plants of broccoli “Early-Big” and cauliflower “An-Nan Early”. These markers are randomly distributed throughout the map, which includes a total of 1,062 genomic SRAP markers, 155 cDNA SRAP markers, 26 SSR markers, 3 broccoli BAC end sequences and 11 known Brassica genes: BoGSL-ALK, BoGSL-ELONG, BoGSL-PROa, BoGSL-PROb, BoCS-lyase, BoGS-OH, BoCYP79F1, BoS-GT (glucosinolate pathway), BoDM1 (resistance to downy mildew), BoCALa, BoAP1a (inflorescence architecture). BoDM1 and BoGSL-ELONG are linked on LG 2 at 0.8 cM, making it possible to use the glucosinolate gene as a marker for the disease resistance gene. By QTL analysis, we found three segments involved in curd formation in cauliflower. The map was aligned to the C genome linkage groups and chromosomes of B. oleracea and B. napus, and anchored to the physical map of A. thaliana. This map adds over 1,000 new markers to Brassica molecular tools. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

16.
Sunflower (Helianthus annuus L.) contains tocopherol, a non-enzymatic antioxidant known as lipid-soluble vitamin E, and phytosterol, with interesting properties, which can result in decreased risk of chronic diseases in humans and with several beneficial effects in plants. The genetic control of tocopherol and phytosterol content in a population of 123 recombinant inbred lines of sunflower was studied through quantitative trait loci (QTL) analysis using 190 simple sequence repeats and a gene-based linkage map. Seven experiments were conducted in different environments in France and Iran during 2007 and 2008. Each experiment consisted of three replications. Means over all environments were used for QTL mapping. Five QTL for total tocopherol content on linkage groups 1, 8, 10 and 14 accounted for 45% of phenotypic variation, whereas four QTL for total phytosterol content on linkage groups 1, 2, 16 and 17 explained 27% of the phenotypic variation. GST, PAT2, SFH3 and POD genes showed co-localization with QTL for total phytosterol content. SMT2 is also mapped on linkage group 17 near the QTL of total phytosterol content. Four candidate genes, VTE4, HPPD, GST and Droug1, exhibited co-localization with QTL for total tocopherol content. The candidate genes associated with tocopherol and phytosterol, especially HPPD, VTE4 and SMT2, could be used for alternation of the tocopherol and phytosterol content of sunflower seeds through the development of functional markers.  相似文献   

17.
In the cross of the durable leaf rust resistant wheat Sinvalocho MA and the susceptible line Gama6, four specific genes were identified: the seedling resistance gene Lr3, the adult plant resistance (APR) genes LrSV1 and LrSV2 coming from Sinvalocho MA, and the seedling resistance gene LrG6 coming from Gama6. Lr3 was previously mapped on 6BL in the same cross. LrSV1 was mapped on chromosome 2DS where resistance genes Lr22a and Lr22b have been reported. Results from rust reaction have shown that LrSV1 from Sinvalocho is not the same allele as Lr22b and an allelism test with Lr22a showed that they could be alleles or closely linked genes. LrSV1 was mapped in an 8.5-cM interval delimited by markers gwm296 distal and gwm261 proximal. Adult gene LrSV2 was mapped on chromosome 3BS, cosegregating with gwm533 in a 7.2-cM interval encompassed by markers gwm389 and gwm493, where other disease resistance genes are located, such as seedling gene Lr27 for leaf rust, Sr2 for stem rust, QTL Qfhs.ndsu-3BS for resistance to Fusarium gramineum and wheat powdery mildew resistance. The gene LrG6 was mapped on chromosome 2BL, with the closest marker gwm382 at 0.6 cM. Lines carrying LrSV1, LrSV2 and LrG6 tested under field natural infection conditions, showed low disease infection type and severity, suggesting that this kind of resistance can be explained by additive effects of APR and seedling resistance genes. The identification of new sources of resistance from South American land races and old varieties, supported by modern DNA technology, contributes to sustainability of agriculture through plant breeding.  相似文献   

18.
CS mice show a free-running period (κ) longer than 24 h and rhythm splitting in constant darkness (DD). These features in behavioral circadian rhythms are distinctive as compared with other inbred strains of mice, which exhibit robust free-running rhythms with κ shorter than 24 h. To identify the genes affecting κ, quantitative trait locus (QTL) analysis was initially conducted by using 289 F2 mice derived from a cross between CS and C57BL/6J strain. A suggestive QTL (LOD = 3.71) with CS allele increasing κ was detected on the distal region of Chromosome (Chr) 19. Next, using 192 F2 mice from a cross between CS and MSM strain, the presence of the QTL on Chr 19 was examined, and we confirmed the QTL at the genome-wide significant level (LOD = 4.61 with 10.4% of the total variance explained). This QTL was named long free-running period (Lfp). Three other suggestive QTLs (LOD = 3.24–4.28) were mapped to the midportion of Chr 12 in (CS×C57BL/6J)F2 mice, and to the proximal and middle region of Chr 19 in (CS×MSM)F2 mice, respectively, of which, CS alleles for two QTLs on Chr 19 have the effect of lengthening κ. None of these QTLs were mapped to the chromosomal regions of previously described QTLs for κ and known clock genes (Clock, mPer1, Bmal1, mCry1, mCry2, mTim, and Csnk1e). Received: 5 July 2000 / Accepted: 5 December 2000  相似文献   

19.
Previously, quantitative trait loci (QTL) for tenth-rib backfat (TENTHRIB) and loin eye area (LEA) were identified on pig Chromosome 1 (SSC 1) near microsatellite S0008 from a three-generation Berkshire × Yorkshire cross (BY). This work attempted to refine these QTL positions and identify genes associated with these QTL. Genotypes of BY (n = 555) were determined by PCR-RFLP or PCR tests for 13 polymorphisms identified in BY F0 individuals for candidate genes, BAC end sequences, and genomic clones. Using least-squares regression interval mapping, the LEA QTL was estimated at S0008; the TENTHRIB QTL position was shifted approximately 1 cM downstream from S0008. Of the genes/sequences mapped in the QTL region, CL349415 was significantly associated with TENTHRIB (p = 0.02) and solute carrier family 2, member 12 (SLC2A12) was significantly associated with LEA (p = 0.02). These results suggest that the gene(s) responsible for the LEA and TENTHRIB QTL effects are tightly linked to S0008 or that the high informativeness of S0008 relative to surrounding markers is influencing the QTL position estimates. In addition, janus kinase 2 (JAK2) was mapped to a suggestive LEA QTL region and showed association with LEA (p = 0.009), fatness, color, and pH traits in BY.  相似文献   

20.
Research was undertaken to identify molecular markers using the ISSR technique for 2-propenyl glucosinolate in Brassica juncea. Bulked segregant analysis was used based on three bulks: (1) low 2-propenyl, low 3-butenyl glucosinolate, (2) high 2-propenyl glucosinolate, low 3-butenyl and (3) low 2-propenyl, high 3-butenyl glucosinolate. An ISSR marker was found to be tightly linked to high 2-propenyl glucosinolate. The ISSR fragment was cloned and sequenced and resulted in a 505 bp fragment bordered by the inverted SSR. An improved primer was designed based on the cloned sequence which resulted in a clear, simple to score, band associated with high 2-propenyl glucosinolate. The marker was screened against a range of canola and mustard quality B. juncea and was found to be widely applicable. The potential usefulness of the marker for canola quality and mustard B. juncea breeding programs is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号