首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
HIV-1 infection induces the expression of high level of GM2 ganglioside on infected cells and IgM antibody (Ab) against GM2 can cause complement (C)-mediated cytolysis of HIV-1-infected cells. Since GM2 is immunogenic in human, we proposed that an anti-GM2 IgM Ab may be produced by some HIV-1-infected patients and the titer of this Ab might provide some insight into the progress of the disease. On this premise, the amount of IgM Ab against GM2 was determined in 124 HIV-1-infected patients and 111 seronegative donors. As expected, the anti-GM2 IgM Ab titers of the patients was significantly higher than that of the seronegative donors while the total IgM levels remained unchanged. In addition, we determined the CD4+ cell count and the HIV-RNA load in the HIV-1-infected patients. The results showed a positive correlation between the anti-GM2 IgM Ab titer and CD4+ cell count but a negative correlation between the anti-GM2 IgM Ab titer and HIV-RNA load. These suggest that anti-GM2 IgM Ab induced and/or enhanced by HIV-1 infection causes C-mediated cytolysis of HIV-1-infected cells in vivo to a certain extent, and may help lower the plateau level of the HIV-RNA load. Therefore, the amount of IgM Ab against GM2 may be related to the prognosis of HIV-1 infected patients.  相似文献   

2.
Human IgM antibody (Ab) to gangliosides induced cytolysis of HIV-1-infected cells by homologous human complement. We expected that any human IgM Ab reactive with HIV-1 infected cells could cause complement-mediated cytolysis. The trans-chromosome mouse (TC mouse) contains human chromosomes harboring genes responsible for immunoglobulin production. Spleen cells from TC mice immunized with recombinant Nef were fused with mouse myeloma cells to generate hybridomas, and we selected those that produced human mu-chain-positive Abs reactive with Nef fixed on an ELISA plate. However, the L-chain of the monoclonal Abs (mAbs) were murine lambda in type and were chimeric, and we could not succeed in obtaining mAb with human mu- and human kappa-chains. The chimeric mAbs reacted with the HIV-1 infected cells as seen with flow cytometric analysis, and the surface expression of Nef was also detectable on chronically infected OM10.1 cells which had no detectable gp120. However, although the reaction of the chimeric IgM mAb with HIV-1-infected MOLT4 cells induced C3 deposition on cell surfaces on incubation with fresh human serum, the cells remained unlysed, as determined by 51Cr release assay. The amount of Nef antigen on the cells might not have been high enough to overcome the function of HRF20 (CD59) that restricts formation of membrane attack complexes of homologous complement. However, combination of anti-Nef IgM mAb with other IgM mAbs reactive with the surface of HIV-1-infected cells may induce a synergistic effect in complement mediated cytolysis.  相似文献   

3.
HIV-1 infection induces aberrant ganglioside GM2 expression on infected cell lines, and human IgM anti-GM2 monoclonal antibody (L55 Ab) together with normal fresh human serum (FHS) as a source of complement causes complement mediated cytolysis of HIV-1 infected cells as well as HIV-1 particles. We report here that high expression of GM2 was also detected on HIV-1 infected lymphocytes from HIV-1 seropositive patients. L55 Ab effectively suppressed the generation of HIV in the presence of FHS in primarily cultured lymphocytes from HIV-1 infected patients in ex vivo experiments, and the suppression was enhanced additively by AZT. These data suggest that L55 Ab may increase the therapeutic effect of chemotherapy.  相似文献   

4.
Following immunization with HIV-1 infected cells, a hybridoma cell line termed 9F11 was established from the P3U-1 myeloma line fused with lymphocytes from a trans-chromosome (TC) mouse, that harbors human chromosomes containing immunoglobulin genes. The 9F11 human IgM monoclonal antibody (9F11 Ab) reacts with HIV-1 infected MOLT4 cells but not with uninfected MOLT4 cells, and causes immune cytolysis with homologous human complement at a concentration as low as 0.4 microg/ml. This Ab was used to perform immunoscreening of a cDNA expression library derived from HIV-1 infected cells. All positive cDNA clones contained SWAP-70 cDNA. SWAP-70 RNA and protein expression are much stronger in HIV-1 infected cells. SWAP-70 was also detected on the surface of HIV-1 infected cells by flow cytometric analysis. The monocyte cell line U937 cells expresses SWAP-70 on its cell surface regardless of whether it was infected with HIV-1. Furthermore, among PBMCs surface expression of SWAP-70 was detected on CD21+, CD56+ and CD14+ cells. Although CD3+ cells scarcely express SWAP-70 on their surface, once activated, they become positive. SWAP-70 may therefore serve as a marker for T cell differentiation as well as for HIV-1 infection.  相似文献   

5.
Recombinant soluble CD4 (rCD4) has been shown to be an effective inhibitor of human immunodeficiency virus type 1 (HIV-1) and HIV-2 infection of lymphoid cells in vitro. In this report, we characterized the effects of rCD4, the V1V2 fragment of CD4, and the immunoadhesin CD4-immunoglobulin G on syncytium formation between lymphoid cells infected by HIV-1 or HIV-2 and uninfected cells. All three molecules blocked HIV-1-mediated syncytium formation, but only CD4-immunoglobulin G blocked HIV-2-mediated syncytium formation. rCD4 and the V1V2 fragment of CD4 enhanced HIV-2-mediated syncytium formation. These results suggest that the process of cell fusion is significantly different between HIV-1- and HIV-2-infected cells.  相似文献   

6.
Although human cells are resistant to homologous human complement due to the presence of species-specific membrane inhibitors, a naturally occurring IgM antibody which recognizes an asialo-oligosaccharide can sensitize HIV-1-infected cells for complement-mediated cytolysis. Therefore, we investigated whether long-term survivors of HIV-1 infection harbor such antibodies in their sera. Thirty of 31 sera from HIV-1 seropositive hemophilia patients who have survived HIV-1 infection 10 years or more showed appreciable cytolytic activity, while only 2 sera of 10 seropositive patients presumed to have been infected with HIV-1 (due to sexual contact) more recently showed cytolytic activity. On the other hand, only 7 out of 43 sera from seronegative hemophilia patients showed cytolytic activity. Immunofluorescence staining for IgM on HIV-L -infected cells essentially correlated with the cytolytic capacity of the sera. Therefore, naturally occurring IgM antibodies and/or generated IgM antibodies reactive with the HIV-L -infected cells in patients might have been responsible for long-term survival due to complement-mediated immune cytolysis which may, in conjunction with cytotoxic T lymphocytes, synergistically suppress the infected cells in vivo. Therefore, the transfusion of such IgM antibodies could be effective for the treatment of HIV-L -infected individuals.  相似文献   

7.
Alterations in plasma membrane function are induced by many cytopathic viruses, including human immunodeficiency virus type 1 (HIV-1). These alterations can result in changes in the intracellular content of ions and other small molecules and can contribute to cytolysis and death of the infected cell. The pH-sensitive fluorescent probe 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein-acetoxymethyl ester was used to quantitate intracellular pH (pHi) in HIV-1-infected T cells. Infection of cells from the CD4+ T-lymphoblastoid line HUT-78 (RH9 subclone) with HIV-1 strain LAI resulted in a significant decrease of pHi, from approximately 7.2 in mock-infected cells to below 6.7 by day 4 after infection, when cells were undergoing acute cytopathic effects. The pHi in persistently infected cells that survived the acute cytopathic effects of HIV-1 was approximately 6.8 to 7.0. Studies with amiloride, an inhibitor of the Na+/H+ exchange system, suggest that HIV-1-induced intracellular acidification in lymphocytes is due, in part, to dysfunction of this plasma membrane ion transport system. The alterations in pHi may mediate certain cytopathic effects of HIV-1, thereby contributing to depletion of CD4+ T lymphocytes in patients with AIDS.  相似文献   

8.
Human immunodeficiency virus type-1 (HIV-1) and human T-cell leukemia virus type-I (HTLV-I) have a similar tropism for target cell types, especially for CD4+ T cells. In this study, we provide evidence that receptors of these two viruses exist independently on the target cell. We established an HTLV-I-producing CD8+ T cell line (ILT-8M2) with a remarkable cell fusion capacity. When cocultured with MOLT-4 cells, ILT-8M2 cells induced giant syncytia more efficiently than any other tested HTLV-I-producer cell lines. In contrast to other HTLV-I-producers, ILT-8M2 cells were minimally susceptible to cytopathic effects of HIV-1 due to very low expression of CD4, although they were able to be persistently infected by HIV-1. The indicator MOLT-4 cells are known to respond well to HIV-1-induced cell fusion, but they lose this ability if they become persistently infected with HIV-1 because of the reduction of CD4 receptor expression. ILT-8M2 was, however, still capable of inducing syncytia with the MOLT-4 cells persistently infected by HIV-1 (MOLT-4/IIIB). This syncytium formation was dependent on the HTLV-I-envelope, as it was inhibited by HTLV-I-positive human sera or a monoclonal antibody to HTLV-I gp46 but not by monoclonal antibodies to HIV-1 gp120 or CD4. Moreover, ILT-8M2 cells persistently infected by HIV-1 (ILT-8M2/IIIB) induced both HTLV-I- and HIV-1-mediated syncytia with uninfected MOLT-4 cells. These results suggest that HTLV-I induces cell fusion utilizing receptors on the target cells independent of HIV-1-receptors.  相似文献   

9.
The trans-chromosome (TC) mouse that we used harbors human chromosomes 2, 14 and/or 22, and has undergone knock-out of its endogeneous genes coding for mu-and kappa-chains of immunoglobulin. One of these TC mice was immunized with HIV-1-infected U937 cells, and spleen cells from the immunized animal were fused with the mouse myeloma cell line to generate hybridoma cells. We selected hybridomas that produce human IgM antibodies (Abs) reactive with HIV-1-infected MOLT4 cells but not with uninfected MOLT4 cells. Two hybridoma cell lines were established termed 9F11 and 2G9. Although 0.4 mug/ml of 9F11 was able to induce complement-mediated cytolysis of the infected cells in the presence of fresh human serum, 2G9 could not. There was no difference between the two monoclonal Abs in the base sequences of cDNAs coding for the constant regions of mu-and kappa-chains. Therefore, we speculate that the ability to activate complement on homologous cell membranes might reflect the structural presentation of antigenic molecules, which could facilitate the binding of an IgM Ab to multiple binding sites resulting in escape from restriction by species-specific inhibitors of complement such as DAF (CD55) and CD59. On the other hand, 2G9 induced apoptosis of HIV-1-infected cells, including latently infected OM10.1 cells, although the Ag for 2G9 remains to be identified. Since both of the Abs had reduced reactivity toward HIV-1-infected MOLT4 cells following cultivation in the presence of tunicamycin, the responsible antigens would involve a sugar moiety.  相似文献   

10.
The Fab' fragment of a monoclonal antibody (mAb) to CD3 and the F(ab')2 fragment of a mAb to human immunodeficiency virus 1 (HIV-1) gp41 were combined to generate a bifunctional antibody (BFA). The mAb to gp41 (IV1-4G6) has previously been shown to react with a number of HIV-1 strains and T-lymphoblastoid cells (TLBC) armed with the BFA (BFA-TLBC) effectively inhibited HIV-1 in primarily cultured lymphoblasts infected with the clinically isolated virus which was reactive to the mAb. Although BFA-TLBC could not cause cytolysis of 51Cr-labeled latently infected cells (OM-10.1) in 6 hr incubation, cocultivation of OM-10.1 cells with BFA-TLBC for 3 days or more eliminated the latently infected cells making the cells susceptible to BFA-TLBC. Therefore, BFA-TLBC may be beneficial for HIV-infected patients in eradicating latently infected cells which can not be eliminated even with highly active antiretroviral therapy (HAART).  相似文献   

11.
NKp30-dependent cytolysis of filovirus-infected human dendritic cells   总被引:1,自引:0,他引:1  
Understanding how protective innate immune responses are generated is crucial to defeating highly lethal emerging pathogens. Accumulating evidence suggests that potent innate immune responses are tightly linked to control of Ebola and Marburg filoviral infections. Here, we report that unlike authentic or inactivated Ebola and Marburg, filovirus-derived virus-like particles directly activated human natural killer (NK) cells in vitro, evidenced by pro-inflammatory cytokine production and enhanced cytolysis of permissive target cells. Further, we observed perforin- and CD95L-mediated cytolysis of filovirus-infected human dendritic cells (DCs), primary targets of filovirus infection, by autologous NK cells. Gene expression knock-down studies directly linked NK cell lysis of infected DCs to upregulation of the natural cytotoxicity receptor, NKp30. These results are the first to propose a role for NK cells in the clearance of infected DCs and the potential involvement of NKp30-mediated cytolysis in control of viral infection in vivo. Further elucidation of the biology of NK cell activation, specifically natural cytotoxicity receptors like NKp30 and NKp46, promises to aid our understanding of microbial pathology.  相似文献   

12.
The phenomenon of interference was exploited to isolate low-abundance noncytopathic human immunodeficiency virus type 1 (HIV-1) variants from a primary HIV-1 isolate from an asymptomatic HIV-1-seropositive hemophiliac. Successive rounds of virus infection of a cytolysis-susceptible CD4+ cell line and isolation of surviving cells resulted in selective amplification of an HIV-1 variant reduced in the ability to induce cytolysis. The presence of a PvuII polymorphism facilitated subsequent amplification and cloning of cytopathic and noncytopathic HIV-1 variants from the primary isolate. Cloned virus stocks from cytopathic and noncytopathic variants exhibited similar replication kinetics, infectivity, and syncytium induction in susceptible host cells. The noncytopathic HIV-1 variant was unable, however, to induce single-cell killing in susceptible host cells. Construction of viral hybrids in which regions of cytopathic and noncytopathic variants were exchanged indicated that determinants for the noncytopathic phenotype map to the envelope glycoprotein. Sequence analysis of the envelope coding regions indicated the absence of two highly conserved N-linked glycosylation sites in the noncytopathic HIV-1 variant, which accompanied differences in processing of precursor gp160 envelope glycoprotein. These results demonstrate that determinants for syncytium-independent single-cell killing are located within the envelope glycoprotein and suggest that single-cell killing is profoundly influenced by alterations in envelope sequence which affect posttranslational processing of HIV-1 envelope glycoprotein within the infected cell.  相似文献   

13.
Understanding the cellular mechanisms that ensure an appropriate innate immune response against viral pathogens is an important challenge of biomedical research. In vitro studies have shown that natural killer (NK) cells purified from healthy donors can kill heterologous cell lines or autologous CD4+ T cell blasts exogenously infected with several strains of HIV-1. However, it is not known whether the deleterious effects of high HIV-1 viremia interferes with the NK cell-mediated cytolysis of autologous, endogenously HIV-1-infected CD4+ T cells. Here, we stimulate primary CD4+ T cells, purified ex vivo from HIV-1-infected viremic patients, with PHA and rIL2 (with or without rIL-7). This experimental procedure allows for the significant expansion and isolation of endogenously infected CD4+ T cell blasts detected by intracellular staining of p24 HIV-1 core antigen. We show that, subsequent to the selective down-modulation of MHC class-I (MHC-I) molecules, HIV-1-infected p24(pos) blasts become partially susceptible to lysis by rIL-2-activated NK cells, while uninfected p24(neg) blasts are spared from killing. This NK cell-mediated killing occurs mainly through the NKG2D activation pathway. However, the degree of NK cell cytolytic activity against autologous, endogenously HIV-1-infected CD4+ T cell blasts that down-modulate HLA-A and -B alleles and against heterologous MHC-I(neg) cell lines is particularly low. This phenomenon is associated with the defective surface expression and engagement of natural cytotoxicity receptors (NCRs) and with the high frequency of the anergic CD56(neg)/CD16(pos) subsets of highly dysfunctional NK cells from HIV-1-infected viremic patients. Collectively, our data demonstrate that the chronic viral replication of HIV-1 in infected individuals results in several phenotypic and functional aberrancies that interfere with the NK cell-mediated killing of autologous p24(pos) blasts derived from primary T cells.  相似文献   

14.
A critical aspect of AIDS pathogenesis that remains unclear is the mechanism by which human immunodeficiency virus type 1 (HIV-1) induces death in CD4(+) T lymphocytes. A better understanding of the death process occurring in infected cells may provide valuable insight into the viral component responsible for cytopathicity. This would aid the design of preventive treatments against the rapid decline of CD4(+) T cells that results in AIDS. Previously, apoptotic cell death has been reported in HIV-1 infections in cultured T cells, and it has been suggested that this could affect both infected and uninfected cells. To evaluate the mechanism of this effect, we have studied HIV-1-induced cell death extensively by infecting several T-cell lines and assessing the level of apoptosis by using various biochemical and flow cytometric assays. Contrary to the prevailing view that apoptosis plays a prominent role in HIV-1-mediated T-cell death, we found that Jurkat and H9 cells dying from HIV-1 infection fail to exhibit the collective hallmarks of apoptosis. Among the parameters investigated, Annexin V display, caspase activity and cleavage of caspase substrates, TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) signal, and APO2.7 display were detected at low to negligible levels. Neither peptide caspase inhibitors nor the antiapoptotic proteins Bcl-x(L) or v-FLIP could prevent cell death in HIV-1-infected cultures. Furthermore, Jurkat cell lines deficient in RIP, caspase-8, or FADD were as susceptible as wild-type Jurkat cells to HIV-1 cytopathicity. These results suggest that the primary mode of cytopathicity by laboratory-adapted molecular clones of HIV-1 in cultured cell lines is not via apoptosis. Rather, cell death occurs most likely via a necrotic or lytic form of death independent of caspase activation in directly infected cells.  相似文献   

15.
M Heinkelein  S Sopper    C Jassoy 《Journal of virology》1995,69(11):6925-6931
Individuals infected with the human immunodeficiency virus (HIV) experience a marked loss of CD4+ T lymphocytes, leading to fatal immunodeficiency. The mechanisms causing the depletion of these cells are not yet understood. In this study, we observed that CD4+ T lymphocytes from HIV type 1 (HIV-1)-infected and uninfected individuals rapidly lysed B lymphoblasts expressing the HIV-1 envelope glycoprotein on the cell surface and Jurkat cells expressing the complete virus. Contact of uninfected CD4+ T cells with envelope glycoprotein-expressing cells also resulted in the lysis of the uninfected CD4+ T cells. Cytolysis did not require priming or in vitro stimulation of the CD4+ T cells and was not restricted by major histocompatibility complex molecules. Cytotoxicity was inhibited by soluble CD4 and anti-CD4 monoclonal antibodies that block binding of CD4 to gp120. In addition, neutralizing anti-CD4 and anti-gp120 monoclonal antibodies which block postbinding membrane fusion events and syncytium formation also inhibited cell lysis, suggesting that identical mechanisms in HIV-infected cultures underlie cell-cell fusion and the cytolysis observed. However, cytotoxicity was not always accompanied by the formation of visible syncytia. Rapid cell lysis after contact of uninfected and HIV-1-infected CD4+ T cells may explain CD4+ T-cell depletion in the absence of detectable syncytia in infected individuals. Moreover, because of its vigor, lysis of envelope-expressing targets by contact with unprimed CD4+ T lymphocytes may at first glance resemble antigen-specific immune responses and should be excluded when cytotoxic T-lymphocyte responses in infected individuals and vaccinees are evaluated.  相似文献   

16.
17.
We have recently shown that a human CD4+ T cell line (CEM-SS) acquires the permissiveness to M-tropic strains and primary isolates of HIV-1 after transplantation into SCID mice. This permissiveness was associated with the acquisition of a memory (CD45RO+) phenotype as well as of a functional CCR5 coreceptor. In this study, we have used this model for invest-igating in vivo the relationships between HIV-1 infection, apoptosis and T cell differentiation. When an in vivo HIV-1 infection was performed, the CEM cell tumors grew to a lower extent than the uninfected controls. CEM cells explanted from uninfected SCID mice (ex vivo CEM) underwent a significant level of spontaneous apoptosis and proved to be CD45RO+, Fas+ and Fas-L+, while Bcl-2 expression was significantly reduced as compared to the parental cells. Acute HIV-1 infection markedly increased apoptosis of uninfected ex vivo CEM cells, through a Fas/Fas-L-mediated autocrine suicide/fratricide, while parental cells did not undergo apoptosis following viral infection. The susceptibility to apoptosis of ex vivo CEM cells infected with the NSI strain of HIV-1, was progressively lost during culture, in parallel with the loss of Fas-L and marked changes in the Bcl-2 cellular distribution. On the whole, these results are strongly reminiscent of a series of events possibly occurring during HIV-1 infection. After an initial depletion of bystander CD4+ memory T cells during acute infection, latently or chronically infected CD4+ T lymphocytes are progressively selected and are protected against spontaneous apoptosis through the development of an efficient survival program. Studies with human cells passaged into SCID mice may offer new opportunities for an in vivo investigation of the mechanisms involved in HIV-1 infection and CD4+ T cell depletion.  相似文献   

18.
Human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1) may interact in the pathogenesis of AIDS. The placental syncytiotrophoblast layer serves as the first line of defense of the fetus against viruses. We analyzed the patterns of replication of HIV-1 and HCMV in singly an dually infected human term syncytiotrophoblast cells cultured in vitro. Syncytiotrophoblast cells exhibited restricted permissiveness for HIV-1, while HCMV replication was restricted at the level of immediate-early and early gene products in the singly infected cells. We found that the syncytiotrophoblasts as an overlapping cell population could be coinfected with HIV-1 and HCMV. HIV-1 replication was markedly upregulated by previous or simultaneous infection of the cells with HCMV, whereas prior HIV-1 infection of the cells converted HCMV infection from a nonpermissive to a permissive one. No simultaneous enhancement of HCMV and HIV-1 expression was observed in the dually infected cell cultures. Major immediate-early proteins of HCMV were necessary for enhancement of HIV-1 replication, and interleukin-6 production induced by HCMV and further increased by replicating HIV-1 synergized with these proteins to produce this effect. Permissive replication cycle of HCMV was induced by the HIV-1 tat gene product. We were unable to detect HIV-1 (HCMV) or HCMV (HIV-1) pseudotypes in supernatant fluids from dually infected cell cultures. Our results suggest that interactions between HIV-1 and HCMV in coinfected syncytiotrophoblast cells may contribute to the transplacental transmission of both viruses.  相似文献   

19.
Interleukin-7 (IL-7) has been used as an immunoregulatory and latency-reversing agent in human immunodeficiency virus type 1 (HIV-1) infection. Although IL-7 can restore circulating CD4+ T cell counts in HIV-1-infected patients, the anti-apoptotic and proliferative effects of IL-7 appear to benefit survival and expansion of HIV-1-latently infected memory CD4+ T lymphocytes. IL-7 has been shown to elevate CD95 on CD4+ T cells in HIV-1-infected individuals and prime CD4+ T lymphocytes to CD95-mediated proliferative or apoptotic signals. Here we observed that through increasing microRNA-124, IL-7 down-regulates the splicing regulator polypyrimidine tract binding protein (PTB), leading to inclusion of the transmembrane domain-encoding exon 6 of CD95 mRNA and, subsequently, elevation of CD95 on memory CD4+ T cells. Moreover, IL-7 up-regulates cellular FLICE-like inhibitory protein (c-FLIP) and stimulates c-Jun N-terminal kinase (JNK) phosphorylation, which switches CD95 signaling to survival mode in memory CD4+ T lymphocytes. As a result, co-stimulation through IL-7/IL-7R and FasL/CD95 signal pathways augments IL-7-mediated survival and expansion of HIV-1-latently infected memory CD4+ T lymphocytes. Collectively, we have demonstrated a novel mechanism for IL-7-mediated maintenance of HIV-1 reservoir.  相似文献   

20.
Natural killer (NK) cells are believed to play a role in the progression of human immunodeficiency virus 1 (HIV-1) disease, and NK cell levels are reduced in individuals with chronic HIV-1 infection. To assess the effects on quantity of NK cells and the changes of NK cell receptors in HIV-1 infected children via mother-to-child transmission, the percentage of NK cells is quantified and the changes in the NK cell receptor profiles in 20 HIV-1 infected children who are not progressing into AIDS were examined. The results showed that NK cell percentage was decreased in the HIV-1 infected children. The expression of NKp30 on NK cells was increased, while the expressions of CD16, NKp44, NKp46, NKp80, NTB-A, CD244, KIR2D, KIR3DL1 and NKG2D on NK cells were decreased in the HIV-1 infected children. NK cell cytolytic activity was elevated in HIV-1 infected children. These results indicate that the acute changes in NK cell percentage and NK cell receptors in HIV-1 infected children are different from the HIV-1 infected adult individuals. Moreover, serum concentrations of IL-18 were elevated in HIV-infected children compared to HIV-uninfected controls. These differences probably play a role in protecting against transmission of maternal HIV-1 virus and guiding the therapeutic strategies for HIV-1 infected children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号