首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Flavonoid glycosides are common dietary components which may have health-promoting activities. The metabolism of these compounds is thought to influence their bioactivity and uptake from the small intestine. It has been suggested that the enzyme cytosolic beta-glucosidase could deglycosylate certain flavonoid glycosides. To test this hypothesis, the enzyme was purified to homogeneity from pig liver for the first time. It was found to have a molecular weight (55 kDa) and specific activity (with p-nitrophenol glucoside) consistent with other mammalian cytosolic beta-glucosidases. The pure enzyme was indeed found to deglycosylate various flavonoid glycosides. Genistein 7-glucoside, daidzein 7-glucoside, apigenin 7-glucoside and naringenin 7-glucoside all acted as substrates, but we were unable to detect activity with naringenin 7-rhamnoglucoside. Quercetin 4'-glucoside was a substrate, but neither quercetin 3, 4'-diglucoside, quercetin 3-glucoside nor quercetin 3-rhamnoglucoside were deglycosylated. Estimates of K(m) ranged from 25 to 90 microM while those for V(max) were about 10% of that found with the standard artificial substrate p-nitrophenol glucoside. The non-substrate quercetin 3-glucoside was found to partially inhibit deglycosylation of quercetin 4'-glucoside, but it had no effect upon activity with p-nitrophenol glucoside. This study confirms that mammalian cytosolic beta-glucosidase can deglycosylate some, but not all, common dietary flavonoid glycosides. This enzyme may, therefore, be important in the metabolism of these compounds.  相似文献   

2.
We measured the activity of several acid hydrolases of cultured oligodendrocytes prepared from adult bovine brain white matter to clarify the biochemical basis of bovine oligodendrocytes in vitro. Lysosomal enzyme activities were assayed by using 4-methylumbelliferyl glycosides as substrates. Lysosomal enzyme activities became higher at 8–11 days in vitro (DIV) than 4 DIV. The enrichment in acid hydrolase specific activities in oligodendrocytes may be associated with lysosomal origin of myelin-like membranes.  相似文献   

3.
[目的]微生物β-葡萄糖苷酶法水解银杏黄酮苷具有重要意义,不过目前这方面的研究极少。因此,本文目的是筛选到水解银杏黄酮苷的酶活高的微生物β-葡萄糖苷酶,并分析其底物选择性机制。[方法]以银杏叶提取物作为唯一碳源富集培养,从贵州传统发酵豆豉中筛选产对银杏黄酮苷水解酶活高的β-葡萄糖苷酶的菌株,并对该菌株进行鉴定。然后比较此β-葡萄糖苷酶对不同底物的选择性,同时测定此酶水解银杏黄酮苷反应的米氏常数Km及最大反应速率Vmax。最后,对不同的底物进行分子对接,分析其底物特异性机制。[结果]结果表明,筛选到的菌株GUXN01所产β-葡萄糖苷酶水解银杏黄酮苷的酶活最高,被鉴定为枯草芽孢杆菌。此β-葡糖糖苷酶对β构型的糖类以及苷类等具有广泛的底物特异性和不同的选择性,尤其对银杏黄酮苷具有很好的亲和性。分子对接研究表明枯草芽孢杆菌β-葡萄糖苷酶对银杏黄酮苷和其他糖苷类具有不同亲和性和选择性的原因主要是酶结构和底物分子结构的相互作用力的差异导致的。[结论]这些发现为GUXN01所产的β-葡萄糖苷酶应用于水解银杏黄酮苷类生产相应苷元奠定了良好的基础。  相似文献   

4.
4-Nitrophenyl glycosides of 2-, 3-, and 5-O-(E)-feruloyl- and 2- and 5-O-acetyl-alpha-L-arabinofuranosides and of 2-, 3-, and 4-O-(E)-feruloyl- and 2-, 3- and 4-O-acetyl-beta-D-xylopyranosides, compounds mimicking natural substrates, were used to investigate substrate and positional specificity of type-A, -B, and -C feruloyl esterases. All the feruloyl esterases behave as true feruloyl esterases showing negligible activity on sugar acetates. Type-A enzymes, represented by AnFaeA from Aspergillus niger and FoFaeII from Fusarium oxysporum, are specialized for deferuloylation of primary hydroxyl groups, with a very strong preference for hydrolyzing 5-O-feruloyl-alpha-L-arabinofuranoside. On the contrary, type-B and -C feruloyl esterases, represented by FoFaeI from F. oxysporum and TsFaeC from Talaromyces stipitatus, acted on almost all ferulates with exception of 4- and 3-O-feruloyl-beta-D-xylopyranoside. 5-O-Feruloyl-alpha-L-arabinofuranoside was the best substrate for both TsFaeC and FoFaeI, although catalytic efficiency of the latter enzyme toward 2-O-feruloyl-alpha-L-arabinofuranoside was comparable. In comparison with acetates, the corresponding ferulates served as poor substrates for the carbohydrate esterase family 1 feruloyl esterase from Aspergillus oryzae. The enzyme hydrolyzed all alpha-L-arabinofuranoside and beta-D-xylopyranoside acetates. It behaved as a non-specific acetyl esterase rather than a feruloyl esterase, with a preference for 2-O-acetyl-beta-D-xylopyranoside.  相似文献   

5.
The glycosyltransferase UGT78G1 from Medicago truncatula catalyzes the glycosylation of various (iso)flavonoids such as the flavonols kaempferol and myricetin, the isoflavone formononetin, and the anthocyanidins pelargonidin and cyanidin. It also catalyzes a reverse reaction to remove the sugar moiety from glycosides. The structures of UGT78G1 bound with uridine diphosphate or with both uridine diphosphate and myricetin were determined at 2.1 Å resolution, revealing detailed interactions between the enzyme and substrates/products and suggesting a distinct binding mode for the acceptor/product. Comparative structural analysis and mutagenesis identify glutamate 192 as a key amino acid for the reverse reaction. This information provides a basis for enzyme engineering to manipulate substrate specificity and to design effective biocatalysts with glycosylation and/or deglycosylation activity.  相似文献   

6.
Two kinds of 3-nitro-2-pyridyl glycosides were synthesized and evaluated as substrates for continuous spectrophotometric assay for glycosidases. The liberated aglycon, 2-hydroxy-3-nitropyridine, immediately tautomerized to 3-nitro-2(1H)-pyridone, causing an absorption shift of ca. 60 nm even under acidic conditions (pH 3-6). Consequently, the enzymatic hydrolysis of these glycosides was monitored continuously in the acidic to neutral pH range (pH 4-7), the optimum pH for most glycosidases. The absorbance of liberated aglycon increased linearly at 390 nm until 10% consumption of the substrate to enable the initial rate to be determined at once without terminating the reaction. The kinetic parameters for the hydrolysis of 3-nitro-2-pyridyl glycosides were obtained from the slopes of the progress curves and were compared with those obtained from the conventional discontinuous assay using p- and o-nitrophenyl glycosides as substrates. The kinetic parameters indicated that 3-nitro-2-pyridyl glycosides were more activated and specific substrates, but with less affinity to the enzymes than the corresponding nitrophenyl glycosides. Moreover, the absorbance shift by tautomerization should promise further applications to continuous spectrophotometric assays for other enzymes acting under acidic conditions, such as acid proteases and acid phosphatases.  相似文献   

7.
Ehrlich ascites tumor cells and ascitic fluid were assayed for glycosidase activity. alpha-Galactosidase and beta-galactosidase, alpha- and beta-mannosidase, alpha-N-acetylgalactosaminidase, and beta-N-acetylglucosaminidase activities were detected using p-nitrophenyl glycosides as substrates. alpha-Galactosidase and alpha-N-acetylgalactosaminidase were isolated from Ehrlich ascites tumor cells on epsilon-aminocaproylgalactosylamine-Sepharose. alpha-Galactosidase was purified 160,000-fold and was free of other glycosidase activities. alpha-N-Acetylgalactosaminidase was also purified 160,000-fold but exhibited a weak alpha-galactosidase activity which appears to be inherent in this enzyme. Substrate specificity of the alpha-galactosidase was investigated with 12 substrates and compared with that of the corresponding coffee bean enzyme. The pH optimum of the Ehrlich cell alpha-galactosidase centered near 4.5, irrespective of substrate, whereas the pH optimum of the coffee bean enzyme for PNP-alpha-Gal was 6.0, which is 1.5 pH units higher than that for other substrates of the coffee bean enzyme. The reverse was found for alpha-N-acetylgalactosaminidase: the pH optimum for the hydrolysis of PNP-alpha-GalNAc was 3.6, lower than the pH 4.5 required for the hydrolysis of GalNAc alpha 1,3Gal. Coffee bean alpha-galactosidase showed a relatively broad substrate specificity, suggesting that it is suited for cleaving many kinds of terminal alpha-galactosyl linkages. On the other hand, the substrate specificity of Ehrlich alpha-galactosidase appears to be quite narrow. This enzyme was highly active toward the terminal alpha-galactosyl linkages of Ehrlich glycoproteins and laminin, both of which possess Gal alpha 1, 3Gal beta 1,4GlcNAc beta-trisaccharide sequences. The alpha-N-acetylgalactosaminidase was found to be active toward the blood group type A disaccharide, and trisaccharide, and glycoproteins with type A-active carbohydrate chains.  相似文献   

8.
Metacaspases are distant relatives of the metazoan caspases, found in plants, fungi, and protists. However, in contrast with caspases, information about the physiological substrates of metacaspases is still scarce. By means of N-terminal combined fractional diagonal chromatography, the physiological substrates of METACASPASE9 (MC9; AT5G04200) were identified in young seedlings of Arabidopsis thaliana on the proteome-wide level, providing additional insight into MC9 cleavage specificity and revealing a previously unknown preference for acidic residues at the substrate prime site position P1′. The functionalities of the identified MC9 substrates hinted at metacaspase functions other than those related to cell death. These results allowed us to resolve the substrate specificity of MC9 in more detail and indicated that the activity of phosphoenolpyruvate carboxykinase 1 (AT4G37870), a key enzyme in gluconeogenesis, is enhanced upon MC9-dependent proteolysis.  相似文献   

9.
Glycosidases of apple fruit: A multi-functional β-galactosidase   总被引:1,自引:0,他引:1  
Extraction of Spartan apple ( Malus domestica ) fruit acetone powder and fractionation of the extract on DEAE-agarose allowed detection and quantification of 10 glycosidases active toward 4-methylumbelliferyl glycosides. Hydrolysis was measured fluorimetrically. The predominant activity, a β- d -galactosidase (EC 3.2.1.23), labile upon purification, was stabilized by soluble PVP. Molecular weights, measured by gel permeation HPLC, pH optima and Km values were obtained for most glycosidase activities. Multiple forms of several activities were found. The major α- d - and β- d -galactosidases were resolved on phosphocellulose. The β- d -galactosidase so obtained had associated α- l -arabinopyranosidase and β- d -fucosidase activities which were retained upon GP-HPLC. Mixed substrate kinetic analysis and inhibition analysis of this fraction indicated that the enzyme has 3 catalytic sites, 1 for each substrate, whose substrates mutually influence each other's activity positively.  相似文献   

10.
Rat-urine glycosidases and kidney damage   总被引:6,自引:3,他引:3       下载免费PDF全文
1. The activities of beta-galactosidase, beta-glucosidase, beta-glucuronidase and N-acetyl, beta-glucosaminidase were estimated in normal and pathological rat urine, with 4-methylumbelliferyl glycosides as substrates. 2. Kidney damage induced by injections of uranium nitrate, mercuric chloride, potassium dichromate or 4-nitrophenylarsonic acid causes a marked increase in the urinary excretion of all four enzymes. 3. The rise in beta-glucosidase activity was associated with the appearance of a new urinary enzyme species, which was examined by starch-gel electrophoresis, DEAE-cellulose chromatography and filtration on Sephadex G-75 and G-200. 4. This enzyme appears to be identical with its counterpart in the kidney, and it is suggested that it arises in the urine as a result of renal tubular breakdown. 5. The other glycosidases examined also show some physical similarities to the corresponding enzymes of the rat kidney.  相似文献   

11.
Citrus spp. are known for the accumulation of flavanone glycosides (e.g., naringin comprises up to 70% of the dry weight of very young grapefruit). In contrast, petunia utilizes relatively more naringenin for production of flavonol glycosides and anthocyanins. This investigation addressed whether or not petunia is capable of glucosylation of naringenin and if so, what are the characteristics of this flavanone glucosylating enzyme. Petunia leaf tissue contains some flavanone-7-O-glucosyltransferase (E.C. 2.4.1.185) activity, although at 90-fold lower levels than grapefruit leaves. This activity was partially purified 89-fold via ammonium sulfate fractionation followed by FPLC on Superose 12 and Mono Q yielding three chromatographically separate peaks of activity. The enzymes in the peak fractions glucosylated flavanone, flavonol, and flavone substrates. Enzymes in Mono Q peaks I and II were relatively more specific toward flavanone substrates and peak I was significantly more active. Enzyme activity was not effected by Ca2+, Mg2+, AMP, ADP, or ATP. The petunia enzyme was over 10,000 times more sensitive to UDP inhibition (Ki 0.89 microM) than the flavanone-specific 7GT in grapefruit. These and other results suggest that different flavanoid accumulation patterns in these two plants may be partially due to the different relative levels and biochemical properties of their flavanone glucosylating (7GT) enzymes.  相似文献   

12.
Rat glutathione transferase 8-8 is one of the less abundant cytosolic glutathione transferases, accounting for approx. 1% of the total activity with 1-chloro-2,4-dinitrobenzene in liver. The enzyme is eluted at pH 6.3 upon chromatofocusing and has so far been identified in liver, kidney, lung and testis. Characteristic properties include high relative activity with ethacrynic acid (70% of the specific activity with 1-chloro-2,4-dinitrobenzene) and an apparent subunit Mr of 24 500. The most significant property noted is the high catalytic activity in the conjugation of 4-hydroxyalk-2-enals, major products of lipid peroxidation. The catalytic efficiency with these substrates exceeds corresponding values for all known substrates tested with any glutathione transferase, which suggests that transferase 8-8 may have evolved to detoxify 4-hydroxyalk-2-enals.  相似文献   

13.
Catharanthus roseus cell suspension cultures converted exogenously added curcumin to a series of curcumin glucosides that possessed drastically enhanced water solubility. A cDNA clone encoding a glucosyltransferase responsible for glucosylation of curcumin to form curcumin 4'-O-glucoside was previously isolated, and in the present study a novel sugar-sugar glycosyltransferase, UDP-glucose:curcumin glucoside glucosyltransferase (UCGGT), was purified approximately 900-fold to apparent homogeneity from cultured cells of C. roseus. The purified enzyme (0.2% activity yield) catalyzed 1,6-glucosylation of curcumin 4'-O-glucoside to yield curcumin 4'-O-gentiobioside. The molecular weight and isoelectric point were estimated to be about 50 kDa and 5.2, respectively. The enzyme showed a pH optimum between 7.5 and 7.8. Both flavonoid 3-O- and 7-O-glucosides were also preferred acceptor substrates of the enzyme, whereas little activity was shown toward simple phenolic glucosides such as arbutin and glucovanillin, cyanogenic glucoside (prunasin) or flavonoid galactoside. These results suggest that UCGGT may also function in the biosynthesis of flavonoid glycosides in planta.  相似文献   

14.
Tyrosinase is a key enzyme in the production of melanins in plants and animals. Forty-five secondary metabolites isolated from Marrubium velutinum and Marrubium cylleneum belonging to the classes of flavonoids, phenylethanoid glycosides, phenolic acids and lignan glycosides were screened for their inhibitory activity against mushroom tyrosinase. Flavonoids and phenylethanoid glycosides showed moderate inhibitory activity, while phenolic acids were less active than phenylethanoid glycosides, suggesting that both phenolic groups are important for the activity.  相似文献   

15.
Recombinant human thymidine kinase 2 (hTK2) expressed in Escherichia coli has been found to bind tightly a substoichiometric amount of deoxyribonucleoside triphosphates (dTTP > dCTP > dATP), known to be strong feedback inhibitors of the enzyme. Incubation of hTK2 with the substrate dThd was able to release the dNTPs from the active site during purification from E. coli and thus allowed the kinetic characterization of the noninhibited enzyme, with the tetrameric hTK2 showing slightly higher activity than the most abundant dimeric form. The unliganded hTK2 revealed a lower structural stability than the inhibitor-bound enzyme forms, being more prone to aggregation, thermal denaturation, and limited proteolysis. Moreover, intrinsic tryptophan fluorescence (ITF), far-UV circular dichroism (CD), and limited proteolysis have revealed that hTK2 undergoes distinct conformational changes upon binding different substrates and inhibitors, which are known to occur in the nucleoside monophosphate kinase family. The CD-monitored thermal denaturation of hTK2 dimer/tetramer revealed an irreversible process that can be satisfactorily described by the two-state irreversible denaturation model. On the basis of this model, the parameters of the Arrhenius equation were calculated, providing evidence for a significant structural stabilization of the enzyme upon ligand binding (dCyd < MgdCTP < dThd < dCTP < dTTP < MgdTTP), whereas MgATP further destabilizes the enzyme. Finally, surface plasmon resonance (SPR) was used to study in real time the reversible binding of substrates and inhibitors to the immobilized enzyme. The binding affinities for the inhibitors were found to be 1-2 orders of magnitude higher than for the corresponding substrates, both by SPR and ITF analysis.  相似文献   

16.
Comparative histochemical and biochemical studies on acid beta-galactosidase activity in the rabbit eye after various experimental injuries were performed using the same sensitive fluorogenic substrate beta-galactoside-4-trifluoromethylumbelliferyl (HFC). The aim of the study was to examine whether the severity of corneal damage corresponds with the level of the enzyme activity in the tear fluid. As until recently the substrate beta-galactoside-4-HFC had not been used for the histochemical detection of acid beta-galactosidase in the cornea, results obtained with this substrate in a fluorescent method were compared in parallel cryostat sections with results obtained using the substrate 5-bromo-4-chloro-3-indoxyl beta-galactoside in the indigogenic method (previously shown to be very sensitive for the detection of acid beta-galactosidase activity in the cornea). Both methods revealed similar localization and changes in enzyme activity; using beta-galactoside-4-HFC an acceptable cellular localization was achieved. For the measurement of acid beta-galactosidase activity in the tear fluid a semiquantitative biochemical method was elaborated using filter paper punches with the substrate (beta-galactoside-4-HFC) soaked with tears and incubated at 37 degrees C. The time of the first appearance of a greenish-yellow fluorescence (enzyme positivity) was recorded by UV lamp and compared with the appearance of fluorescence in calibrated punches containing known acid beta-galactosidase activities. The results show that beta-galactoside-4-HFC is useful for the biochemical assessment of acid beta-galactosidase activity in the tear fluid. Comparing histochemical and biochemical results, it can be concluded that increased enzymatic activity in tears parallels the severity of corneal damage. Further studies are necessary to evaluate whether the detection of acid beta-galactosidase activity in tears might be useful for diagnostic purposes in humans.  相似文献   

17.
Lactase-phlorizin hydrolase is a disaccharidase present in the small intestine of mammals. This enzyme has two active sites, one being responsible for the hydrolysis of lactose. Lactase activity is thought to be selective towards glycosides with a hydrophilic aglycon. In this work, we report a systematic study on the importance of each hydroxyl group in the substrate molecule for lactase activity. For this purpose, all of the monodeoxy derivatives of methyl beta-lactoside and other lactose analogues are studied as lactase substrates. With respect to the galactose moiety, it is shown here that HO-3' and HO-2' are necessary for hydrolysis of the substrates by lactase. Using these chemically modified substrates, it has been confirmed that lactase does not behave as a typical beta-galactosidase, since it does not show an absolute selectivity with respect to substitution and stereochemistry at C4' in the galactose moiety of the substrate. However, the glucose moiety, in particular the HO-6, appears to be important for substrate hydrolysis, although none of the hydroxyl groups seemed to be essential. In order to differentiate both activities of the enzyme, a new assay for the phlorizin-hydrolase activity has also been developed.  相似文献   

18.
4-Methylumbelliferyl (4-MU) glycosides of N-acetylglucosamine oligosaccharides were used as substrates to detect expression of a Streptomyces chitinase in Escherichia coli. Low levels of enzyme were detected when S. plicatus DNA was cloned into a bacteriophage lambda vector (EMBL-4). Subcloning into E. coli plasmids also gave low but detectable levels of enzyme expression. High level expression was achieved by resection of the cloned S. plicatus DNA with Bal31 followed by in-frame fusion to the amino-terminal peptide sequence of beta-galactosidase found in the pUC vectors. The Streptomyces chitinase was secreted into the periplasmic space of E. coli, and its signal sequence was removed. We characterized the activity of the cloned enzyme and compared it to three other purified Streptomyces plicatus chitinases with respect to hydrolysis of the 4-MU oligosaccharides. We found that two of the enzymes form 4-methylumbelliferone much more rapidly from the 4-MU disaccharide than from the trisaccharide. These same enzymes convert the 4-MU trisaccharide primarily to diacetylchitobiose and the 4-MU monosaccharide, a nonfluorescent product. The latter compound is not hydrolyzed appreciably by any of the enzymes. On the basis of these results, we suggest a new definition of "exo" and "endo" chitinase that differs from that found in the literature. We propose that exochitinase activity be defined as processive action starting at the nonreducing ends of chitin chains with release of successive diacetylchitobiose units, and that endochitinase activity be defined as random cleavage at internal points in chitin chains.  相似文献   

19.
Tsotsou GE  Barbirato F 《Biochimie》2007,89(5):591-604
L-Lysine cyclodeaminase from Streptomyces pristinaespiralis was heterologously expressed in Escherichia coli, isolated to 90% purity after two purification steps and characterised. The size of the isolated recombinant enzyme was in agreement with the theoretical size calculated from the corresponding gene. We demonstrated that our preparation converts L-lysine to L-pipecolic acid (enantiomeric excess >95%) after isolating and identifying the conversion product by LC/MS, NMR and IR. This conversion followed Michaelis-Menten kinetics with a K(m) of 1.39+/-0.32 mM. The enzyme activity was maximal at pH 6.7. Reducing conditions, the presence of glycerol and in particular the presence of iron(II) significantly enhanced the L-lysine cyclodeaminase activity. Although the heat stability of the enzyme diminished significantly after 37 degrees C, the initial rate of reaction was maximal at 61 degrees C. We found no requirement for an external cofactor for full activity, although sequence data indicate NAD+ as cofactor. Upon enzyme denaturation, NAD+ release was observed, which indicates very tight binding of NAD+ to the enzyme. In parallel we developed selection and screening assays for lysine cyclodeaminase, which we adapted to microtitre plate format and validated. Among twenty-eight lysine analogues screened for turnover/binding to the enzyme, three were identified as substrates (L-ornithine, 5-hydroxylysine and L-4-thialysine), while another six (4-azalysine, L-2,4-diaminobutyric acid, 1,5-diaminopentane, N-epsilon-trifluoroacetyl-L-lysine, N-epsilon-Boc-L-lysine and N-epsilon-methyl-L-lysine) were shown to compete against L-lysine turnover without being converted by the enzyme. All substrates displayed Michaelis-Menten kinetics upon turnover by lysine cyclodeaminase. Our results indicate that the lysine cyclodeaminase from Streptomyces pristinaespiralis is a highly enantioselective enzyme at the substrate recognition and conversion levels, in both cases in favour of the l-isomer.  相似文献   

20.
The kinetic parameters (Km and V) of human arylsulphatase B (4-sulpho-N-acetylgalactosamine sulphatase) activity in cultured skin fibroblasts were determined with a variety of substrates matching structural aspects of the physiological substrates in vivo chondroitin 4-sulphate and dermatan sulphate. More structurally complex substrates, in which several aspects of the aglycone structure of the natural substrate were maintained, were desulphated up to 4400 times faster than the minimum arylsulphatase-B-specific substrate, namely the monosaccharide N-acetylgalactosamine 4-sulphate. Aglycone structures that influence substrate binding and/or enzyme activity were an adjacent-residue C-6 carboxy group and a second but internal N-acetylgalactosamine 4-sulphate residue. Arylsulphatase B activity in fibroblast homogenates assayed with O-(beta-N-acetylgalactosamine 4-sulphate)-(1----4)-O-D-(beta-glucuronic acid)-(1----3)-O-D-N-acetyl[1-3H] galactosaminitol 4-sulphate derived from chondroitin 4-sulphate as substrate clearly distinguished Maroteaux-Lamy-syndrome patients from normal controls and other mucopolysaccharidosis patients. We recommend the use of the above trisaccharide substrate for both postnatal and prenatal diagnosis of Maroteaux-Lamy syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号