首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
近年来重组DNA技术不仅在蛋白质结构与功能的研究中已成为有用的新方法,而且已发展为工程性的应用学科—基因工程。因其具有广泛的应用前景,而倍受重视,是生物工程中最引人注目的一个领域。很多蛋白质和肽类物质已经可用基因工程方法进行生产。很多“生物工程公司”也就芸芸而生。重组DNA的表达产物已经或准备作为生物制品或药物走向市场,用于多种疾病的治疗,诸如:人胰岛素、人生长激素、干扰素、组织纤溶酶激活剂(TPA)、红血球生成素(EPO)和乙型肝炎疫苗。  相似文献   

2.
基因工程菌中重组质粒的稳定性研究进展   总被引:5,自引:1,他引:4  
基因工程菌(细胞)是现代生物工程中的微型生物反应器,是基因工程的研究主体之一.获得使外源基因高效稳定表达的基因工程菌或细胞是基因工程的核心步骤与最终目的.基因工程菌重组质粒稳定性问题是基因工程菌工业化生产与实验研究中的最主要问题,就其在基因工程中的重要性、影响因素及提高稳定性策略方面作简要介绍并展开综述.  相似文献   

3.
DNA双螺旋模型的提出意味着分子生物学的诞生,重组DNA技术的建立标志着遗传工程和生物工程的问世。可以说重组DNA技术对整个生物学研究的影响比起DNA双螺旋来说有过之而无不及。目前世界上从事生物学或医学研究的大多数实验室都在使用这项技术解决不同的生物学问题。许多人衡量一个生物学实验室是否先进总喜欢把是否运用重组DNA技术和基因工程作为一个重要标志。一、重组DNA技术和基因工程概况重组DNA技术和基因工程涉及的内容很广,不仅包括外源DNA和载体的重组,还应  相似文献   

4.
20世纪70年代伯格(P.Berg)利用内切酶把分属2个不同作用的DNA重组到一起,宣告了基因工程的诞生。基因工程是在分子水平上,用人工方法提取(或合成)不同生物的遗传物质,在体外切割、拼接和重组、然后通过载体把重组的DNA分子引入受体细胞.使外源DNA在受体细胞中进行复制和表达。按人们的  相似文献   

5.
基因工程是分子水平上的遗传工程。它主要运用重组DNA技术,在特殊酶的作用下,在体外人工连接来自不同生物体的目的基因于有自主复制能力的载体(质粒)DNA中,建成重组DNA的质粒:将此重组质粒送入受体生物细胞去复制和表达,达到遗传物质的转移,产生所需蛋白质。重组DNA技术的主要环节有:目的基因的分离或克隆、体外重组、载体传递或转染和复制、受体细胞繁殖和表达、蛋白质提纯和制备等。基因工程的最大特点是,打破了生物种间界限,使微生物、动植物、甚至人类之间的遗传物质可以互相转移和重组。  相似文献   

6.
遗传工程又称“遗传操作”,有广义和狭义之说。广义的遗传工程指把一种生物的遗传物质转移到另一种生物的细胞中去,并使这种遗传物质所带的遗传信息在受体细胞中表达。狭义的遗传工程又称基因工程或重组DNA技术,这是从供体生物提取所需基因,也就是DNA片段,与载体重组后引入受体生物,从而改变受体  相似文献   

7.
Red同源重组技术研究进展   总被引:6,自引:0,他引:6  
伴随着分子生物学的发展,一种基于λ噬菌体Red重组酶的同源重组系统已应用于大肠杆菌基因工程研究。Red重组系统由三种蛋白组成:Exo蛋白是一种核酸外切酶,结合在双链DNA的末端,从5′端向3′端降解DNA,产生3′突出端;Beta蛋白结合在单链DNA上,介导互补单链DNA退火;Gam蛋白可与RecBCD酶结合,抑制其降解外源DNA的活性。Red同源重组技术具有同源序列短(40~60bp)、重组效率高的特点。这种技术可在DNA靶标分子的任意位点进行基因敲除、敲入、点突变等操作,无需使用限制性内切酶和连接酶。此外,这种新型重组技术可直接将目的基因克隆于载体上,目的基因既可来源于细菌人工染色体也可是基因组DNA。Red同源重组技术使难度较大的基因工程实验顺利进行,大大推动功能基因组研究的发展。  相似文献   

8.
保罗·伯格     
王虹 《遗传》2006,28(12):1487-1488
20世纪, 生物学领域乃至整个科学领域最有影响的事件, 莫过于基因工程的诞生了。基因工程的产生并不是偶然的, 它是分子生物学发展到一定的阶段或时期的一种历史的必然。从20世纪40年代开始, 许多科学家对基因进行了一系列的探索, 为基因工程的产生作出了理论和技术上的准备。美国分子生物学家保罗·伯格在这中间进行了关键性的研究, 他领导的研究小组在体外完成了两种DNA分子的重组, 成为基因工程的开拓性人物。因而与分子生物学家桑格(F. Sanger)和吉尔伯特(W. Gilbert)分享1980年诺贝尔化学奖。  相似文献   

9.
基因工程菌     
曹虎 《生物学通报》1991,(12):21-21
生物工程如果从1972年美国斯坦福大学生物化学家P.伯格首次构成第一批重组DNA分子开始,迄今才18年的历史。在这短短的十几年中,由于生物工程学家的努力,生命科学迅速进入了人工改造和创造新生命的时代。生物工程技术的发展,是与某些细菌质粒工具的利用分不开的。由于质粒DNA分子只有细菌核物质DNA分子的1%,易于提取分离和纯化,又极易与目的基因重组,就成了基因工程生产不可缺少的手段。细菌体内的基因,如抗性基因、合成特殊产品的基因等又是人们培育抗逆良种、获取重要生化产品的目的基因。我们可以把运用于生物工程生产,为人类作出巨大贡献的细菌、真菌、放线菌称之为基因工程菌。  相似文献   

10.
阮义理  施农农 《昆虫知识》1990,27(2):123-125
基因工程又称基因重组或基因操作,是生物技术领域里一个重要的方面。所谓基因工程是将某种生物的基因,连接到另一种生物的DNA中,使之重新组建。转化体能表达新的性状特性,并能遗传。其主要环节有:1.从基因供体分离目的基因;2.将目的基因插入适当的载  相似文献   

11.
大肠杆菌重组工程   总被引:4,自引:0,他引:4  
源于噬菌体的大肠杆菌同源重组系统不需要限制性内切酶和DNA连接酶就可以进行DNA克隆和亚克隆,还能快速地改造质粒、细菌人工染色体及细菌基因组染色体,是基因工程技术的一大突破,被称为重组基因工程或重组工程。该技术操作简单,效率较高,可望为功能基因组学研究提供一个有力的工具。  相似文献   

12.
乳酸菌生物技术是21世纪各国竞相开拓的一个尖端领域,其主要包括基因工程、蛋白质工程、细胞工程和发酵工程方面的研究内容。其中,以DNA重组技术为核心的基因工程是乳酸菌生物技术众多分支中的重点。文章以基因工程为例,围绕重组乳酸菌表达外源基因的优势及其在防治常见疾病中的应用进行了综述。  相似文献   

13.
遗传工程一般是指将外源基因与DNA载体结合,形成重组DNA,然后引入到受体细胞,使外源基因复制并产生相应基因产物的技术,亦称为基因工程或重组DNA技术。也有人把细胞融合和染色体工程包括在遗传工程的范畴之内。 五十年代和六十年代分子遗传学的蓬勃发展,使人们搞清了基因的本质以及遗传信息复制和传递的机制,再加上七十年代初限制性内切酶的发现,基因分离技术的进展和细胞转化方法的建立,使遗传工程这门定向改造生物的新技术应运而生。1973年,Cohen等使大肠杆菌的抗四环素质粒和抗链霉素质粒在试管中重组,并在大肠杆菌中表达,进行了第一项遗传工程实验。  相似文献   

14.
翟启慧 《昆虫学报》1989,32(3):365-375
重组DNA技术即基因工程,亦为人们称做基因克隆或基因操作。重组DNA技术已被应用于昆虫学的基础研究和应用研究中。本文首先对重组DNA技术及基因转移技术(在昆虫学研究中与重组DNA技术配合应用的重要手段)作一简述,然后着重介绍这些技术在昆虫学研究中的应用概况。 重组DNA技术 重组DNA技术就是将DNA从细胞中分离出来,切割成片段,与载体DNA连接,形成重组DNA分子,然后导入宿主细胞,进行复制。  相似文献   

15.
位点专一性蛋白酶——基因工程的新工具廉德君(中国科学院上海生物化学研究所,上海200031)关键词位点专一性蛋白酶基因工程随着基因工程技术的发展,通过重组DNA技术获得目的蛋白已成为一种常规的实验室操作。将目的蛋白基因和层析“手臂”蛋白或多肽基因融合...  相似文献   

16.
转基因食品的安全你知道多少?   总被引:1,自引:0,他引:1  
随着20世纪60年代DNA结构的发现和70年代核酸分子生物学的发展,基因操作技术(基因工程)日趋成熟。由于利用基因工程操作的原理可以人为地制造出自然界中以前并不存在的新型转基因生物,因此,该项技术一问世,对各种转基因生物是否安全的争论就伴随而生。  相似文献   

17.
Calgene 获得了第一个在基因工程植物中使用反义技术的专利。专利号4,801,540保护延伸开的种植架生产水果的专有西红柿植物。Calgene 以前宣布,该公司已成功地利用反义重组 DNA 技术减少与成熟果实软化有关普通西红柿酶(多聚半乳糖醛酸酶或 PG)的存在。该公司的技术涉及到用“反义 PG”基因的工程植物以便极大地减少该酶的产生。反义西红柿是由该公司与 Campbell Soup 公司合作投资开发的。Campbell Soup 公司拥有世界西红柿权,且是  相似文献   

18.
重组DNA技术     
重组DNA(recombihant DNA),顾名思义,即将两种不同的DNA分子,经过裁剪并重新组合,创造出一种新的、杂合的DNA分子,然后将它转化或转导至受体细胞并在其中进行复制以及表达。这一技术通常叫作基因工程,广义来讲也称为遗传工程。1972年,美国生物化学家P.Berg等人首先将XDNA上剪切下来的一段基因,成功地拼接到SV_(40)病毒DNA分子上,从而开创了这一崭新的技术。随后,这一技术在现代生物学的研究和  相似文献   

19.
通过PCR技术从粘质沙雷氏菌H3010基因组DNA中扩增出该D-乳酸脱氢酶基因,连接至pET-28a(+)表达载体,转入大肠杆菌BL21 (DE3)中进行了重组表达,优化了酶纯化的条件,并对其酶学性质进行初步研究.结果表明,获得的该酶编码基因全长993 bp,编码330个氨基酸,大小为37 kDa.经优化表达及纯化条件后重组酶纯度可达90%.酶学性质研究发现,该重组酶最适反应温度为60℃,最适酶促反应pH为7.5(0.2 mol/L磷酸盐缓冲液),37℃下测得对底物丙酮酸的动力学参数Km =3.39 mmol/L,Vmax =6.87 mmol/( mg · min),对辅酶NADH的动力学参数Km=1.43 mmol/L,Vmax=1.61 mmol/( mg· min).为酶法生产D-乳酸及利用代谢工程构建产D-乳酸的基因工程菌打下基础.  相似文献   

20.
<正> 生物技术,又称生物工程,是利用生物学过程进行工业、农业、医药及其它行业生产的一门科学技术,它是生物科学最新成就与工程技术相结合的产物。一般认为,它包括基因工程(DNA重组)、细胞工程(杂交瘤技术、植物细胞、组织培养和体细胞杂交)、酶工程(利用酶将一种物质转化为另一种物质)和发酵工程(利用微生物将各种原料转化为不同的产品)等四个方面。生物技术自七十年代崛起以来,发展非常迅速,现已成为新技术革命的重要组成部分。国外学者预言,生物技术对人类今后的经济和生产活动将产生重大影响,在农业上将导致一  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号