首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anna Alemany  Felix Ritort 《Biopolymers》2014,101(12):1193-1199
The characterization of elastic properties of biopolymers is crucial to understand many molecular reactions determined by conformational bending fluctuations of the polymer. Direct measurement of such elastic properties using single‐molecule methods is usually hindered by the intrinsic tendency of such biopolymers to form high‐order molecular structures. For example, single‐stranded deoxyribonucleic acids (ssDNA) tend to form secondary structures such as local double helices that prevent the direct measurement of the ideal elastic response of the ssDNA. In this work, we show how to extract the ideal elastic response in the entropic regime of short ssDNA molecules by mechanically pulling two‐state DNA hairpins of different contour lengths. This is achieved by measuring the force dependence of the molecular extension and stiffness on mechanically folding and unfolding the DNA hairpin. Both quantities are fit to the worm‐like chain elastic model giving values for the persistence length and the interphosphate distance. This method can be used to unravel the elastic properties of short ssDNA and RNA sequences and, more generally, any biopolymer that can exhibit a cooperative two‐state transition between mechanically folded and unfolded states (such as proteins). © 2014 Wiley Periodicals, Inc. Biopolymers 101: 1193–1199, 2014.  相似文献   

2.
3.
Sequencing DNA in a synthetic solid-state nanopore is potentially a low-cost and high-throughput method. Essential to the nanopore-based DNA sequencing method is the ability to control the motion of a single-stranded DNA (ssDNA) molecule at single-base resolution. Experimental studies showed that the average translocation speed of DNA driven by a biasing electric field can be affected by ionic concentration, solvent viscosity, or temperature. Even though it is possible to slow down the average translocation speed, instantaneous motion of DNA is too diffusive to allow each DNA base to stay in front of a sensor site for its measurement. Using extensive all-atom molecular dynamics simulations, we study the diffusion constant, friction coefficient, electrophoretic mobility, and effective charge of ssDNA in a solid-state nanopore. Simulation results show that the spatial fluctuation of ssDNA in 1 ns is comparable to the spacing between neighboring nucleotides in ssDNA, which makes the sensing of a DNA base very difficult. We demonstrate that the recently proposed DNA transistor could potentially solve this problem by electrically trapping ssDNA inside the DNA transistor and ratcheting ssDNA base-by-base in a biasing electric field. When increasing the biasing electric field, we observed that the translocation of ssDNA changes from ratcheting to steady-sliding. The simulated translocation of ssDNA in the DNA transistor was theoretically characterized using Fokker-Planck analysis.  相似文献   

4.
Single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA (ssDNA) and participate in all genetic processes involving ssDNA, such as replication, recombination, and repair. Here we applied atomic force microscopy to directly image SSB-DNA complexes under various conditions. We used the hybrid DNA construct methodology in which the ssDNA segment is conjugated to the DNA duplex. The duplex part of the construct plays the role of a marker, allowing unambiguous identification of specific and nonspecific SSB-DNA complexes. We designed hybrid DNA substrates with 5'- and 3'-ssDNA termini to clarify the role of ssDNA polarity on SSB loading. The hybrid substrates, in which two duplexes are connected with ssDNA, were the models for gapped DNA substrates. We demonstrated that Escherichia coli SSB binds to ssDNA ends and internal ssDNA regions with the same efficiency. However, the specific recognition by ssDNA requires the presence of Mg(2+) cations or a high ionic strength. In the absence of Mg(2+) cations and under low-salt conditions, the protein is capable of binding DNA duplexes. In addition, the number of interprotein interactions increases, resulting in the formation of clusters on double-stranded DNA. This finding suggests that the protein adopts different conformations depending on ionic strength, and specific recognition of ssDNA by SSB requires a high ionic strength or the presence of Mg(2+) cations.  相似文献   

5.
We have established an in vitro reaction in which heteroduplex DNA formation is dependent on the concerted actions of recA and recBCD proteins, the major components of the recBCD pathway of genetic recombination in vivo. We find that heteroduplex DNA formation requires three distinct enzymatic functions: first, the helicase activity of recBCD enzyme initiates heteroduplex DNA formation by unwinding the linear double-stranded DNA molecule to transiently form single-stranded DNA (ssDNA); second, recA protein traps this ssDNA before it reanneals; third, recA protein catalyzes the pairing of this ssDNA molecule with another homologous ssDNA molecule, followed by the renaturation of these molecules to form heteroduplex DNA. The first two functions should be important to all in vitro reactions involving recA and recBCD proteins, whereas the third will be specific to the DNA substrates used. The rate-limiting step of heteroduplex DNA formation is the trapping by recA protein of the ssDNA produced by recBCD enzyme. A model for this reaction is described.  相似文献   

6.
ICP8 is the major single-stranded DNA (ssDNA) binding protein of the herpes simplex virus type 1 and is required for the onset and maintenance of viral genomic replication. To identify regions responsible for the cooperative binding to ssDNA, several mutants of ICP8 have been characterized. Total reflection X-ray fluorescence experiments on the constructs confirmed the presence of one zinc atom per molecule. Comparative analysis of the mutants by electrophoretic mobility shift assays was done with oligonucleotides for which the number of bases is approximately that occluded by one protein molecule. The analysis indicated that neither removal of the 60-amino-acid C-terminal region nor Cys254Ser and Cys455Ser mutations qualitatively affect the intrinsic DNA binding ability of ICP8. The C-terminal deletion mutants, however, exhibit a total loss of cooperativity on longer ssDNA stretches. This behavior is only slightly modulated by the two-cysteine substitution. Circular dichroism experiments suggest a role for this C-terminal tail in protein stabilization as well as in intermolecular interactions. The results show that the cooperative nature of the ssDNA binding of ICP8 is localized in the 60-residue C-terminal region. Since the anchoring of a C- or N-terminal arm of one protein onto the adjacent one on the DNA strand has been reported for other ssDNA binding proteins, this appears to be the general structural mechanism responsible for the cooperative ssDNA binding by this class of protein.  相似文献   

7.
In this paper, we use molecular dynamics simulations to study the assembly of DNA-grafted nanoparticles to demonstrate specifically the effect of bidispersity in grafted DNA strand length on the thermodynamics and structure of nanoparticle assembly at varying number of grafted single-stranded DNA (ssDNA) strands and number of guanine/cytosine (G/C) bases per strand. At constant number of grafted ssDNA strands and G/C nucleotides per strand, as bidispersity in strand lengths increases, the number of nanoparticles that assemble as well as the number of neighbours per particle in the assembled cluster increases. When the number of G/C nucleotides per strand in short and long strands is equal, the long strands hybridise with the other long strands with higher frequency than the short strands hybridise with short/long strands. This dominance of the long strands leads to bidisperse systems having similar thermodynamics to that in corresponding systems with monodisperse long strands. Structurally, however, as a result of long–long, long–short and short–short strand hybridisation, bidispersity in DNA strand length leads to a broader inter-particle distance distribution within the assembled cluster than seen in systems with monodisperse short or monodisperse long strands. The effect of increasing the number of G/C bases per strand or increasing the number of grafted DNA strands on the thermodynamics of assembly is similar for bidisperse and monodisperse systems. The effect of increasing the number of grafted ssDNA strands on the structure of the assembled cluster is dependent on the extent of strand bidispersity because the presence of significantly shorter ssDNA strands among long ssDNA strands reduces the crowding among the strands at high grafting density. This relief in crowding leads to larger number of strands hybridised and as a result larger coordination number in the assembled cluster in systems with high bidispersity in strands than in corresponding monodisperse or low bidispersity systems.  相似文献   

8.
Effect of RecF protein on reactions catalyzed by RecA protein.   总被引:12,自引:1,他引:11       下载免费PDF全文
RecF protein is one of at least three single strand DNA (ssDNA) binding proteins which act in recombination and repair in Escherichia coli. In this paper we show that our RecF protein preparation complexes with ssDNA so as to retard its electrophoretic movement in an agarose gel. The apparent stoichiometry of RecF-ssDNA-binding measured in this way is one RecF molecule for every 15 nucleotides and the binding appears to be cooperative. Interaction of the other two ssDNA-binding proteins, RecA and Ssb proteins, has been studied extensively; so in this paper we begin the study of the interaction of RecF and RecA proteins. We found that the RecF protein preparation inhibits the activity of RecA protein in the formation of joint molecules whether added before or after addition of RecA protein to ssDNA. It, therefore, differs from Ssb protein which stimulates joint molecule formation when added to ssDNA after RecA protein. We found that our RecF protein preparation inhibits two steps prior to joint molecule formation: RecA protein binding to ssDNA and coaggregate formation between ssDNA-RecA complexes and dsDNA. We found that it required a much higher ratio of RecF to RecA protein than normally occurs in vivo to inhibit joint molecule formation. The insight that these data give to the normal functioning of RecF protein is discussed.  相似文献   

9.
10.
The tetrameric Escherichia coli single-stranded DNA (ssDNA) binding protein (Ec-SSB) functions in DNA metabolism by binding to ssDNA and interacting directly with numerous DNA repair and replication proteins. Ec-SSB tetramers can bind ssDNA in multiple DNA binding modes that differ in the extent of ssDNA wrapping. Here, we show that the structurally similar SSB protein from the malarial parasite Plasmodium falciparum (Pf-SSB) also binds tightly to ssDNA but does not display the same number of ssDNA binding modes as Ec-SSB, binding ssDNA exclusively in fully wrapped complexes with site sizes of 52-65 nt/tetramer. Pf-SSB does not transition to the more cooperative (SSB)(35) DNA binding mode observed for Ec-SSB. Consistent with this, Pf-SSB tetramers also do not display the dramatic intra-tetramer negative cooperativity for binding of a second (dT)(35) molecule that is evident in Ec-SSB. These findings highlight variations in the DNA binding properties of these two highly conserved homotetrameric SSB proteins, and these differences might be tailored to suit their specific functions in the cell.  相似文献   

11.
12.
DNA-responsive hydrogels that can shrink or swell   总被引:1,自引:0,他引:1  
Molecule-responsive hydrogels are reputed to be smart materials because of their unique properties. We recently reported that hydrogels containing directly grafted single-stranded (ss) DNA or ssDNA-polyacrylamide conjugate in a semi-interpenetrating network (semi-IPN) manner that "only shrunk" by the addition of ssDNA samples. To date, however, no DNA-responsive hydrogels have been reported capable of "swelling" in response to specific DNAs. Smart materials capable of both shrinking and swelling in response to specific DNAs would be very useful in biochemical and biomedical applications. Here, we show a novel "shrinking or swelling" DNA-responsive mechanism. Novel hybrid hydrogels containing rationally designed ssDNA as the cross-linker were capable of shrinking or swelling in response to ssDNA samples and recognizing a single base difference in the samples. On the basis of the results presented in this paper, it is envisioned that these novel hybrid hydrogels could function and have potential in applications such as DNA-sensing devices and DNA-triggered actuators.  相似文献   

13.
Genetic evidence suggests that the SPP1-encoded gene 35 product (G35P) is essential for phage DNA replication. Purified G35P binds single-strand DNA (ssDNA) and double-strand (dsDNA) and specifically interacts with SPP1-encoded replicative DNA helicase G40P and SSB protein G36P. G35P promotes joint molecule formation between a circular ssDNA and a homologous linear dsDNA with an ssDNA tail. Joint molecule formation requires a metal ion but is independent of a nucleotide cofactor. Joint molecules formed during these reactions contain a displaced linear ssDNA strand. Electron microscopic analysis shows that G35P forms a multimeric ring structure in ssDNA tails of dsDNA molecules and left-handed filaments on ssDNA. G35P promotes strand annealing at the AT-rich region of SPP1 oriL on a supercoiled template. These results altogether are consistent with the hypothesis that the homologous pairing catalyzed by G35P is an integral part of SPP1 DNA replication. The loading of G40P at a d-loop (ori DNA or at any stalled replication fork) by G35P could lead to replication fork reactivation.  相似文献   

14.
Agrobacterium tumefaciens infects plant cells by the transfer of DNA. A key factor in this process is the bacterial virulence protein VirE2, which associates stoichiometrically with the transported single-stranded (ss) DNA molecule (T-strand). As observed in vitro by transmission electron microscopy, VirE2-ssDNA readily forms an extended helical complex with a structure well suited to the tasks of DNA protection and nuclear import. Here we have elucidated the role of the specific molecular chaperone VirE1 in regulating VireE2-VirE2 and VirE2-ssDNA interactions. VirE2 alone formed functional filamentous aggregates capable of ssDNA binding. In contrast, co-expression with VirE1 yielded monodisperse VirE1-VirE2 complexes. Cooperative binding of VirE2 to ssDNA released VirE1, resulting in a controlled formation mechanism for the helical complex that is further promoted by macromolecular crowding. Based on this in vitro evidence, we suggest that the constrained volume of the VirB channel provides a natural site for the exchange of VirE2 binding from VirE1 to the T-strand.  相似文献   

15.
Shrinking biosensors down to microscale dimensions enables increases in sensitivity and the ability to analyze minute samples such as the contents of individual cells. The goal of the present study is to create mobile microscale biosensors by attaching molecular beacons to microtubules and using kinesin molecular motors to transport these functionalized microtubules across two-dimensional surfaces. Previous work has shown that microfluidic channels can be functionalized with kinesin motors such that microtubules can be transported and directed through these channels without the need for external power or pressure-driven pumping. In this work, we show that molecular beacons can be attached to microtubules such that both the fluorescence reporting capability of the beacon and the motility of the microtubules are retained. These molecular beacon-functionalized microtubules were able to bind ssDNA target sequences, transport them across surfaces, and report their presence by an increase in fluorescence that was detected by fluorescence microscopy. This work is an important step toward creating hybrid microdevices for sensitive virus detection or analyzing mRNA profiles of individual cells.  相似文献   

16.
APOBEC3G (A3G) is an antiviral protein that binds RNA and single-stranded DNA (ssDNA). The oligomerization state of A3G is likely to be influenced by these nucleic acid interactions. We applied the power of nanoimaging atomic force microscopy technology to characterize the role of ssDNA in A3G oligomerization. We used recombinant human A3G prepared from HEK-293 cells and specially designed DNA substrates that enable free A3G to be distinguished unambiguously from DNA-bound protein complexes. This DNA substrate can be likened to a molecular ruler because it consists of a 235-bp double-stranded DNA visual tag spliced to a 69-nucleotide ssDNA substrate. This hybrid substrate enabled us to use volume measurements to determine A3G stoichiometry in both free and ssDNA-bound states. We observed that free A3G is primarily monomeric, whereas ssDNA-complexed A3G is mostly dimeric. A3G stoichiometry increased slightly with the addition of Mg(2+), but dimers still predominated when Mg(2+) was depleted. A His-248/His-250 Zn(2+)-mediated intermolecular bridge was observed in a catalytic domain crystal structure (Protein Data Bank code 3IR2); however, atomic force microscopy analyses showed that the stoichiometry of the A3G-ssDNA complexes changed insignificantly when these residues were mutated to Ala. We conclude that A3G exchanges between oligomeric forms in solution with monomers predominating and that this equilibrium shifts toward dimerization upon binding ssDNA.  相似文献   

17.
Wang W  Wan W  Stachiw A  Li AD 《Biochemistry》2005,44(32):10751-10756
Foldable polymers with alternating single-strand deoxyribonucleic acid (ssDNA) and planar fluorescent organic chromophores can self-organize into folded nanostructures and hence are hybrid foldamers with biological sequences and synthetic properties. The biological sequence provides highly specific molecular recognition properties, while the physical properties of synthetic chromophores offer sensitive fluorescence detection. In this paper, we describe that rational designed hybrid foldamers exhibit potential in the detection of polynucleotides. Under strictly controlled laboratory conditions, fluorescence measurements indicate that configuration change due to binding of polynucleotides with one or two mismatched bases can be readily distinguished. These results shed light on the design and construction of nanostructured foldamers with actuator and sensory properties, which may find important applications as biological probes.  相似文献   

18.
The polysaccharide and biopolymer, beta-glucan, has been used for the purpose of enhancing immunity and its use as a drug delivery system has been diversified. Betaglucan, a triple helix structure, is unstructured to single strands by heat, DMSO or NaOH. Synthesis of beta-glucan nanoparticles using DMSO and water is easy and fast, but its size is limited. In this study, beta-glucan nanoparticles (GluNPs) were prepared by slicing beta-glucan into low molecular weight using various concentrations of Trifluoroacetic acid (TFA). TFA-treated GluNPs showed a minimum size of 250 nm. In addition, there is no abnormality in the characteristic of the functional groups of the nanoparticle surface after the acid treatment allowing GluNPs use in immune cell activation. Also, the efficiency of GluNPs as a drug or DNA carrier was confirmed by inserting ssDNA into the glucan triple helix structure. Beta-glucan nanoparticles developed in this study would be expected to be used for genetic material delivery and immune response enhancement.  相似文献   

19.
RECQ5 is one of five RecQ helicases found in humans and is thought to participate in homologous DNA recombination by acting as a negative regulator of the recombinase protein RAD51. Here, we use kinetic and single molecule imaging methods to monitor RECQ5 behavior on various nucleoprotein complexes. Our data demonstrate that RECQ5 can act as an ATP-dependent single-stranded DNA (ssDNA) motor protein and can translocate on ssDNA that is bound by replication protein A (RPA). RECQ5 can also translocate on RAD51-coated ssDNA and readily dismantles RAD51–ssDNA filaments. RECQ5 interacts with RAD51 through protein–protein contacts, and disruption of this interface through a RECQ5–F666A mutation reduces translocation velocity by ∼50%. However, RECQ5 readily removes the ATP hydrolysis-deficient mutant RAD51–K133R from ssDNA, suggesting that filament disruption is not coupled to the RAD51 ATP hydrolysis cycle. RECQ5 also readily removes RAD51–I287T, a RAD51 mutant with enhanced ssDNA-binding activity, from ssDNA. Surprisingly, RECQ5 can bind to double-stranded DNA (dsDNA), but it is unable to translocate. Similarly, RECQ5 cannot dismantle RAD51-bound heteroduplex joint molecules. Our results suggest that the roles of RECQ5 in genome maintenance may be regulated in part at the level of substrate specificity.  相似文献   

20.
Essential genomic transactions such as DNA‐damage repair and DNA replication take place on single‐stranded DNA (ssDNA) or require specific single‐stranded/double‐stranded DNA (ssDNA/dsDNA) junctions (SDSJ). A significant challenge in single‐molecule studies of DNA–protein interactions using optical trapping is the design and generation of appropriate DNA templates. In contrast to dsDNA, only a limited toolbox is available for the generation of ssDNA constructs for optical tweezers experiments. Here, we present several kinds of DNA templates suitable for single‐molecule experiments requiring segments of ssDNA of several kilobases in length. These different biotinylated dsDNA templates can be tethered between optically trapped microspheres and can, by the subsequent use of force‐induced DNA melting, be converted into partial or complete ssDNA molecules. We systematically investigated the time scale and efficiency of force‐induced melting at different ionic strengths for DNA molecules of different sequences and lengths. Furthermore, we quantified the impact of microspheres of different sizes on the lifetime of ssDNA tethers in optical tweezers experiments. Together, these experiments provide deeper insights into the variables that impact the production of ssDNA for single molecules studies and represent a starting point for further optimization of DNA templates that permit the investigation of protein binding and kinetics on ssDNA. © 2013 Wiley Periodicals, Inc. Biopolymers 99:611–620, 2013.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号