共查询到5条相似文献,搜索用时 26 毫秒
1.
Next generation sequencing is revolutionizing molecular ecology by simplifying the development of molecular genetic markers, including microsatellites. Here, we summarize the results of the large-scale development of microsatellites for 54 nonmodel species using next generation sequencing and show that there are clear differences amongst plants, invertebrates and vertebrates for the number and proportion of motif types recovered that are able to be utilized as markers. We highlight that the heterogeneity within each group is very large. Despite this variation, we provide an indication of what number of sequences and consequent proportion of a 454 run are required for the development of 40 designable, unique microsatellite loci for a typical molecular ecological study. Finally, to address the challenges of choosing loci from the vast array of microsatellite loci typically available from partial genome runs (average for this study, 2341 loci), we provide a microsatellite development flowchart as a procedural guide for application once the results of a partial genome run are obtained. 相似文献
2.
3.
J. Carlsson D. T. Gauthier J. E. L. Carlsson J. P. Coughlan E. Dillane R. D. Fitzgerald U. Keating P. McGinnity L. Mirimin T. F. Cross 《Journal of fish biology》2013,82(3):944-958
By combining next‐generation sequencing technology (454) and reduced representation library (RRL) construction, the rapid and economical isolation of over 25 000 potential single‐nucleotide polymorphisms (SNP) and >6000 putative microsatellite loci from c. 2% of the genome of the non‐model teleost, Atlantic cod Gadus morhua from the Celtic Sea, south of Ireland, was demonstrated. A small‐scale validation of markers indicated that 80% (11 of 14) of SNP loci and 40% (6 of 15) of the microsatellite loci could be amplified and showed variability. The results clearly show that small‐scale next‐generation sequencing of RRL genomes is an economical and rapid approach for simultaneous SNP and microsatellite discovery that is applicable to any species. The low cost and relatively small investment in time allows for positive exploitation of ascertainment bias to design markers applicable to specific populations and study questions. 相似文献
4.
Development and characterization of 24 microsatellite markers in Primula tosaensis,an endangered primrose,using MiSeq 下载免费PDF全文
Masaya Yamamoto Yoshihiro Handa Hiroki Aihara Hiroaki Setoguchi 《Plant Species Biology》2018,33(1):77-80
Primula tosaensis (Primulaceae) is an endangered primrose endemic to Japan. In this study, 24 novel microsatellite markers were developed using Illumina MiSeq sequencing to facilitate conservation of this endangered species. The genetic diversity and polymorphisms of these novel markers were measured in 32 individuals from a wild P. tosaensis population. The number of alleles and expected heterozygosities ranged from 2 to 5 (mean = 2.8) and from 0.119 to 0.724 (mean = 0.395), respectively. All loci were in Hardy–Weinberg equilibrium. The markers developed in this study will provide a powerful and practical tool for investigating the population structure and genetic diversity of P. tosaensis. 相似文献
5.
Isolation and characterization of tri‐ and tetra‐repeat microsatellite loci in the white‐spotted charr Salvelinus leucomaenis (Salmonidae) 下载免费PDF全文
Tri‐ and tetra‐motif repeat microsatellite marker loci were developed for the white‐spotted charr Salvelinus leucomaenis. The 454 pyrosequencing was used to discover repeat arrays, and eight microsatellite‐primer sets, available for the estimation of polymorphisms, were identified. The number of alleles in a wild population ranged from two to four and the observed and expected heterozygosities were 0·180–0·600 and 0·188–0·599, respectively. 相似文献