首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The medicinal plant Psychotria ipecacuanha produces ipecac alkaloids, a series of monoterpenoid-isoquinoline alkaloids such as emetine and cephaeline, whose biosynthesis derives from condensation of dopamine and secologanin. Here, we identified three cDNAs, IpeOMT1–IpeOMT3, encoding ipecac alkaloid O-methyltransferases (OMTs) from P. ipecacuanha. They were coordinately transcribed with the recently identified ipecac alkaloid β-glucosidase Ipeglu1. Their amino acid sequences were closely related to each other and rather to the flavonoid OMTs than to the OMTs involved in benzylisoquinoline alkaloid biosynthesis. Characterization of the recombinant IpeOMT enzymes with integration of the enzymatic properties of the IpeGlu1 revealed that emetine biosynthesis branches off from N-deacetylisoipecoside through its 6-O-methylation by IpeOMT1, with a minor contribution by IpeOMT2, followed by deglucosylation by IpeGlu1. The 7-hydroxy group of the isoquinoline skeleton of the aglycon is methylated by IpeOMT3 prior to the formation of protoemetine that is condensed with a second dopamine molecule, followed by sequential O-methylations by IpeOMT2 and IpeOMT1 to form cephaeline and emetine, respectively. In addition to this central pathway of ipecac alkaloid biosynthesis, formation of all methyl derivatives of ipecac alkaloids in P. ipecacuanha could be explained by the enzymatic activities of IpeOMT1–IpeOMT3, indicating that they are sufficient for all O-methylation reactions of ipecac alkaloid biosynthesis.  相似文献   

2.
From the dried roots of Cephaelis acuminata, five ipecac alkaloids, neocephaeline, 7'-O-demethylcephaeline, 10-O-demethylcephaeline, 2'-N-(1"-deoxy-1"-beta-D-fructopyranosyl)cephaeline and 2'-N-(1"-deoxy-1"-beta-D-fructopyranosyl)neocephaeline, were isolated, along with emetine, cephaeline, psychotrine, protoemetine, 9-demethylprotoemetinol and isocephaeline. Structures were determined by spectroscopic and chemical means.  相似文献   

3.
Ipecac alkaloids produced in the medicinal plant Psychotria ipecacuanha such as emetine and cephaeline possess a monoterpenoid-tetrahydroisoquinoline skeleton, which is formed by condensation of dopamine and secologanin. Deglucosylation of one of the condensed products N-deacetylisoipecoside (1 alpha(S)-epimer) is considered to be a part of the reactions for emetine biosynthesis, whereas its 1 beta(R)-epimer N-deacetylipecoside is converted to ipecoside in P. ipecacuanha. Here, we isolated a cDNA clone Ipeglu1 encoding Ipecac alkaloid beta-D-glucosidase from P. ipecacuanha. The deduced protein showed 54 and 48% identities to raucaffricine beta-glucosidase and strictosidine beta-glucosidase, respectively. Recombinant IpeGlu1 enzyme preferentially hydrolyzed glucosidic Ipecac alkaloids except for their lactams, but showed poor or no activity toward other substrates, including terpenoid-indole alkaloid glucosides. Liquid chromatography-tandem mass spectrometry analysis of deglucosylated products of N-deacetylisoipecoside revealed spontaneous transitions of the highly reactive aglycons, one of which was supposed to be the intermediate for emetine biosynthesis. IpeGlu1 activity was extremely poor toward 7-O-methyl and 6,7-O,O-dimethyl derivatives. However, 6-O-methyl derivatives were hydrolyzed as efficiently as non-methylated substrates, suggesting the possibility of 6-O-methylation prior to deglucosylation by IpeGlu1. In contrast to the strictosidine beta-glucosidase that stereospecifically hydrolyzes 3 alpha(S)-epimer in terpenoid-indole alkaloid biosynthesis, IpeGlu1 lacked stereospecificity for its substrates where 1 beta(R)-epimers were preferred to 1 alpha(S)-epimers, although ipecoside (1 beta(R)) is a major alkaloidal glucoside in P. ipecacuanha, suggesting the compartmentalization of IpeGlu1 from ipecoside. These facts have significant implications for distinct physiological roles of 1 alpha(S)- and 1 beta(R)-epimers and for the involvement of IpeGlu1 in the metabolic fate of both of them.  相似文献   

4.
5.
Eschscholzia californica produces various types of isoquinoline alkaloids. The structural diversity of these chemicals is often due to cytochrome P450 (P450) activities. Members of the CYP719A subfamily, which are found only in isoquinoline alkaloid-producing plant species, catalyze methylenedioxy bridge-forming reactions. In this study, we isolated four kinds of CYP719A genes from E. californica to characterize their functions. These four cDNAs encoded amino acid sequences that were highly homologous to Coptis japonica CYP719A1 and E. californica CYP719A2 and CYP719A3, which suggested that these gene products may be involved in isoquinoline alkaloid biosynthesis in E. californica, especially in methylenedioxy bridge-forming reactions. Expression analysis of these genes showed that two genes (CYP719A9 and CYP719A11) were preferentially expressed in plant leaf, where pavine-type alkaloids accumulate, whereas the other two showed higher expression in root than in other tissues. They were suggested to have distinct physiological functions in isoquinoline alkaloid biosynthesis. Enzyme assay analysis using recombinant proteins expressed in yeast showed that CYP719A5 had cheilanthifoline synthase activity, which was expected based on the similarity of its primary structure to that of Argemone mexicana cheilanthifoline synthase (deposited at DDBJ/GenBanktrade mark/EMBL). In addition, enzyme assay analysis of recombinant CYP719A9 suggested that it has methylenedioxy bridge-forming activity toward (R,S)-reticuline. CYP719A9 might be involved in the biosynthesis of pavine- and/or simple benzylisoquinoline-type alkaloids, which have a methylenedioxy bridge in an isoquinoline ring, in E. californica leaf.  相似文献   

6.
Ipecac (Psychotria ipecacuanha) is a perennial, medicinal herb that grows as clusters in the understory of humid, shady areas of the Atlantic Rain Forest of southeastern Brazil. This investigation followed the contents of emetine and cephaeline, the bioactive constituents, and assessed root attributes in roots that were sampled periodically from four clusters of Ipecac (VRB8, ITA1, ITA2, and ITA3) that were growing in natural conditions. HPLC analyses showed that the content of the two alkaloids underwent monthly fluctuations over one year period. The concentration of emetine, but not cephaeline, differed significantly among the four clusters. The highest mean content of emetine was found in VRB8 (1.44%), followed by ITA1 (1.14%), ITA2 (0.63%), and finally ITA3 (0.44%). The highest mean content of cephaeline was found in ITA2 and ITA3 (0.26%), although it was not significantly different from ITA1 and VRB8 contents (0.15%). Correlation analysis revealed that contents of emetine are significant (P < 0.01), but negatively correlated (−0.23) with that of cephaeline. Small sized roots characterized the low-emetine clusters ITA2 and ITA3, while the high-emetine clusters ITA1 and VRB8 consistently yielded larger roots. In these four clusters, emetine contents were correlated positively with fresh root weight, and with diameter and weight of the dried root. Conversely, cephaeline contents were negatively correlated with these three attributes.  相似文献   

7.
Callus and adventitious roots were induced on leaf segments from shoot culture of Cephaelis ipecacuanha A. Richard on Murashige-Skoog medium containing 2,4-dichlorophenoxyacetic acid, indole-3-acetic acid, 1-naphthaleneacetic acid and kinetin. The contents of emetic alkaloids in calli, roots and root suspension cultures were quantified by HPLC. Roots cultured in solid and liquid Murashige-Skoog media yielded emetine and cephaeline. The amount of the two alkaloids in the root suspension culture was very similar to that of roots from ipecac mother plant grown in a greenhouse. In contrast, calli subcultured on Murashige-Skoog media containing combinations of 2,4-dichlorophenoxyacetic acid and kinetin produced only trace amounts of emetic alkaloids.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA l-naphthaleneacetic acid - Kin kinetin - MS Murashige-Skoog - EM emetine - CP cephaeline - DW dry weight.  相似文献   

8.
9.
Production of the ipecac alkaloids, emetine and cephaeline was studied in cell suspension and excised root cultures of Cephaelis ipecacuanha. A two-stage cell suspension culture was developed for enhanced accumulation of the alkaloids. In the first-stage, suspension cultures were established in Murashige and Skoog's (MS) medium containing 2,4-D and NAA which was suitable for cell growth and the second-stage culture system was composed of MS medium containing IBA, IAA and 6% sucrose which favoured alkaloid production. The production of emetine and cephaeline was greatly increased in the two-stage culture method compared to the single-stage culture. Optimal alkaloid synthesis was obtained in excised root culture of the plant in medium composed of half-strength MS salts, IBA (0.25 mgl−1) and 2% sucrose. A discernible higher accumulation of cephaeline in two-stage cell suspension culture as well as in excised root culture in comparison to that of the three-year-old roots was a  相似文献   

10.
The methylation of the ribose 2'-OH of RNA occurs widely in nature and in all stable RNAs and occurs at five positions in yeast tRNA. 2'-O-methylation of tRNA at position 4 is interesting because it occurs in the acceptor stem (which is normally undermodified), it is the only 2'-O-methylation that occurs in the middle of a duplex region in tRNA, the modification is conserved in eukaryotes, and the features of the tRNA necessary for substrate recognition are poorly defined. We show here that Saccharomyces cerevisiae ORF YOL125w (TRM13) is necessary and sufficient for 2'-O-methylation at position 4 of yeast tRNA. Biochemical analysis of the S. cerevisiae proteome shows that Trm13 copurifies with 2'-O-methylation activity, using tRNAGlyGCC as a substrate, and extracts made from a trm13-Delta strain have undetectable levels of this activity. Trm13 is necessary for activity in vivo because tRNAs isolated from a trm13-Delta strain lack the corresponding 2'-O-methylated residue for each of the three known tRNAs with this modification. Trm13 is sufficient for 2'-O-methylation at position 4 in vitro since yeast Trm13 protein purified after expression in Escherichia coli has the same activity as that produced in yeast. Trm13 protein binds substrates tRNAHis and tRNAGlyGCC with KD values of 85+/-8 and 100+/-14 nM, respectively, and has a KM for tRNAHis of 10 nM, but binds nonsubstrate tRNAs very poorly (KD>1 microM). Trm13 is conserved in eukaryotes, but there is no sequence similarity between Trm13 and other known methyltransferases.  相似文献   

11.
In vitro experiments using [1-(14)C] and [2-(14)C]acetate were devised to study the biosynthesis of the defensive coccinellid alkaloids adaline and coccinelline in Adalia 2-punctata and Coccinella 7-punctata, respectively. The labelled alkaloids obtained in these experiments had a specific activity about ten times higher than that of the samples obtained in feeding experiments. This in vitro assay has enabled us to demonstrate that these two alkaloids are most likely biosynthesised through a fatty acid rather than a polyketide pathway, that glutamine is the preferred source of the nitrogen atom and that alkaloid biosynthesis takes place in the insect fat body.  相似文献   

12.
The insecticidal loline alkaloids, produced by Neotyphodium uncinatum and related endophytes, are exo-1-aminopyrrolizidines with an ether bridge between C-2 and C-7. Loline alkaloids vary in methyl, acetyl, and formyl substituents on the 1-amine, which affect their biological activity. Enzymes for key loline biosynthesis steps are probably encoded by genes in the LOL cluster, which is duplicated in N. uncinatum, except for a large deletion in lolP2. The role of lolP1 was investigated by its replacement with a hygromycin B phosphotransferase gene. Compared to wild type N. uncinatum and an ectopic transformant, DeltalolP1 cultures had greatly elevated levels of N-methylloline (NML) and lacked N-formylloline (NFL). Complementation of DeltalolP1 with lolP1 under control of the Emericella nidulans trpC promoter restored NFL production. These results and the inferred sequence of LolP1 indicate that it is a cytochrome P450, catalyzing oxygenation of an N-methyl group in NML to the N-formyl group in NFL.  相似文献   

13.
14.
A high-performance liquid chromatographic assay method for the quantitation of ipecac alkaloids (cephaeline and emetine) in human plasma and urine is described. Human plasma or urine was extracted with diethylether under alkaline conditions following the addition of an internal standard. Concentrations of alkaloids and internal standard were determined by octadecylsilica chromatographic separation (Symmetry C18 columns, plasma analysis; 15 cm×4.6 mm I.D., 5 μm particle size, urine analysis; 7.5 cm×4.6 mm I.D., 5 μm particle size). The mobile phase consisted of buffer (20 mmol/l 1-heptanesulfonic acid sodium salt, adjusted to pH 4.0 with acetic acid)–methanol (51:49, v/v). Eluate fluorescence was monitored at 285/316 nm. The lowest quantitation limits of cephaeline and emetine were 1 and 2.5 ng/ml, respectively, in plasma, and 5 ng/ml in urine. Intra- and inter-day relative standard deviations were below 15%. The assay is sensitive, specific and applicable to pharmacokinetic studies in humans.  相似文献   

15.
Involvement of Ca(2+) signalling in regulation of the biosynthesis of monoterpene indole alkaloids (MIA) in Catharanthus roseus has been extensively studied in recent years, albeit no protein of this signalling pathway has been isolated. Using a PCR strategy, two C. roseus cDNAs encoding distinct calmodulin (CAM) isoforms were cloned and named CAM1 and CAM2. The deduced 149 amino acid sequences possess four Ca(2+) binding domains and exhibit a close identity with Arabidopsis CAM isoforms (>91%). The ability of CAM1 and CAM2 to bind Ca(2+) was demonstrated following expression of the corresponding recombinant proteins. Furthermore, transient expression of CAM1-GFP and CAM2-GFP in C. roseus cells showed a typical nucleo-cytoplasm localisation of both CAMs, in agreement with the wide distribution of CAM target proteins. Using RNA blot analysis, we showed that CAM1 and CAM2 genes had a broad pattern of expression in C. roseus organs and are constitutively expressed during a C. roseus cell culture cycle, with a slight inhibitory effect of auxin for CAM1. Using RNA in situ hybridisation, we also detected CAM1 and CAM2 mRNA in the vascular bundle region of young seedling cotyledons. Finally, using specific inhibitors, we also showed that CAMs are required for MIA biosynthesis in C. roseus cells by acting on regulation of expression of genes encoding enzymes that catalyse early steps of MIA biosynthesis, such as 1-deoxy-d-xylulose 5-phosphate reductoisomerase and geraniol 10-hydroxylase.  相似文献   

16.
Seven new ajmaline type alkaloids, alstiphyllanines I-O (1-7) were isolated from the leaves of Alstonia macrophylla together with six related alkaloids (8-13). Structures and stereochemistry of 1-7 were fully elucidated and characterized by 2D NMR analysis. A series of alstiphyllanines I-O (1-7) as well as the known ajmaline type alkaloids (8-13) showed that they relaxed phenylephrine (PE)-induced contractions against rat aortic ring. Among them, vincamedine (10) showed potent vasorelaxant activity, which may be mediated through inhibition of Ca(2+) influx through voltage-dependent Ca(2+) channels (VDCs) and/or receptor-operated Ca(2+) channels (ROCs) as well as partially mediated the NO release from endothelial cells. The presence of substituents at both N-1 and C-17 may be important to show vasorelaxation activity.  相似文献   

17.
Penicillium roqueforti produces several prenylated indole alkaloids, including roquefortine C and clavine alkaloids. The first step in the biosynthesis of roquefortine C is the prenylation of tryptophan-derived dipeptides by a dimethylallyltryptophan synthase, specific for roquefortine biosynthesis (roquefortine prenyltransferase). A second dimethylallyltryptophan synthase, DmaW2, different from the roquefortine prenyltransferase, has been studied in this article. Silencing the gene encoding this second dimethylallyltryptophan synthase, dmaW2, proved that inactivation of this gene does not prevent the production of roquefortine C, but suppresses the formation of other indole alkaloids. Mass spectrometry studies have identified these compounds as isofumigaclavine A, the pathway final product and prenylated intermediates. The silencing does not affect the production of mycophenolic acid and andrastin A. A bioinformatic study of the genome of P. roqueforti revealed that DmaW2 (renamed IfgA) is a prenyltransferase involved in isofumigaclavine A biosynthesis encoded by a gene located in a six genes cluster (cluster A). A second three genes cluster (cluster B) encodes the so-called yellow enzyme and enzymes for the late steps for the conversion of festuclavine to isofumigaclavine A. The yellow enzyme contains a tyrosine-181 at its active center, as occurs in Neosartorya fumigata, but in contrast to the Clavicipitaceae fungi. A complete isofumigaclavines A and B biosynthetic pathway is proposed based on the finding of these studies on the biosynthesis of clavine alkaloids.  相似文献   

18.
19.
We studied the effects of amino acids on the biosynthesis of protoberberine alkaloids. When 5 mM tyrosine was added to the nutrient medium, the content of alkaloids was reduced by 23% and dry weight was only 77% of the control. On the medium with 1 mM L-tryptophan, the content of alkaloids was somewhat increased (by 20%). Other amino acids (sulfur-containing L-cysteine and L-methionine, and also L-proline and L-arginine) did not affect substantially the content of alkaloids. The addition of 1 and 5 mM L-phenylalanine, which is not a primary precursor to alkaloids, induced the accumulation of alkaloids by the 17th day of the growth cycle by 40 and 140%, respectively, as compared to control treatment. The comparison of various phenylalanine concentrations showed that 7 mM phenylalanine added on the 7– 8th day induced the highest accumulation of alkaloids in the culture medium (above 1 g/l). The content of alkaloids and soluble phenolic compounds increased threefold in both the medium and cells. None of the amino acid tested enhanced biomass accumulation.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 3, 2005, pp. 438–442.Original Russian Text Copyright © 2005 by Urmantseva, Gaevskaya, Karyagina, Bairamashvili.  相似文献   

20.
Park SU  Yu M  Facchini PJ 《Plant physiology》2002,128(2):696-706
California poppy (Eschscholzia californica Cham.) cell cultures produce several benzophenanthridine alkaloids, such as sanguinarine, chelirubine, and macarpine, with potent pharmacological activity. Antisense constructs of genes encoding two enzymes involved in benzophenanthridine alkaloid biosynthesis, the berberine bridge enzyme (BBE) and N-methylcoclaurine 3'-hydroxylase (CYP80B1), were introduced separately into California poppy cell cultures. Transformed cell lines expressing antisense BBE or antisense CYP80B1 constructs and displaying low levels of BBE or CYP80B1 mRNAs, respectively, showed reduced accumulation of benzophenanthridine alkaloids compared with control cultures transformed with a beta-glucuronidase gene. Pathway intermediates were not detected in any of the transformed cell lines. The suppression of benzophenanthridine alkaloid biosynthesis using BBE or CYP80B1 antisense RNA constructs also reduced the growth rate of the cultures. Two-dimensional (1)H-nuclear magnetic resonance and in vivo (15)N-nuclear magnetic resonance spectroscopy showed no difference in the abundance of carbohydrate metabolites in the various transgenic cell lines. However, transformed cells with reduced benzophenanthridine alkaloid levels contained larger cellular pools of several amino acids including alanine, leucine, phenylalanine, threonine, and valine compared with controls. The relative abundance of tyrosine, from which benzophenanthridine alkaloids are derived, was less than 2-fold higher in antisense-suppressed cells relative to controls. These results show that alterations in the metabolic flux through benzophenanthridine alkaloid biosynthesis can affect the regulation of amino acid pools. These data provide new insight into the metabolic engineering of benzophenanthridine alkaloid pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号