首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In many longitudinal studies, it is of interest to characterize the relationship between a time-to-event (e.g. survival) and several time-dependent and time-independent covariates. Time-dependent covariates are generally observed intermittently and with error. For a single time-dependent covariate, a popular approach is to assume a joint longitudinal data-survival model, where the time-dependent covariate follows a linear mixed effects model and the hazard of failure depends on random effects and time-independent covariates via a proportional hazards relationship. Regression calibration and likelihood or Bayesian methods have been advocated for implementation; however, generalization to more than one time-dependent covariate may become prohibitive. For a single time-dependent covariate, Tsiatis and Davidian (2001) have proposed an approach that is easily implemented and does not require an assumption on the distribution of the random effects. This technique may be generalized to multiple, possibly correlated, time-dependent covariates, as we demonstrate. We illustrate the approach via simulation and by application to data from an HIV clinical trial.  相似文献   

3.
    
  相似文献   

4.
    
This paper presents the zero‐truncated negative binomial regression model to estimate the population size in the presence of a single registration file. The model is an alternative to the zero‐truncated Poisson regression model and it may be useful if the data are overdispersed due to unobserved heterogeneity. Horvitz–Thompson point and interval estimates for the population size are derived, and the performance of these estimators is evaluated in a simulation study. To illustrate the model, the size of the population of opiate users in the city of Rotterdam is estimated. In comparison to the Poisson model, the zero‐truncated negative binomial regression model fits these data better and yields a substantially higher population size estimate. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
    
  相似文献   

6.
  总被引:2,自引:0,他引:2  
Horton NJ  Laird NM 《Biometrics》2001,57(1):34-42
This article presents a new method for maximum likelihood estimation of logistic regression models with incomplete covariate data where auxiliary information is available. This auxiliary information is extraneous to the regression model of interest but predictive of the covariate with missing data. Ibrahim (1990, Journal of the American Statistical Association 85, 765-769) provides a general method for estimating generalized linear regression models with missing covariates using the EM algorithm that is easily implemented when there is no auxiliary data. Vach (1997, Statistics in Medicine 16, 57-72) describes how the method can be extended when the outcome and auxiliary data are conditionally independent given the covariates in the model. The method allows the incorporation of auxiliary data without making the conditional independence assumption. We suggest tests of conditional independence and compare the performance of several estimators in an example concerning mental health service utilization in children. Using an artificial dataset, we compare the performance of several estimators when auxiliary data are available.  相似文献   

7.
8.
    
Shaw PA  Prentice RL 《Biometrics》2012,68(2):397-407
Uncertainty concerning the measurement error properties of self-reported diet has important implications for the reliability of nutritional epidemiology reports. Biomarkers based on the urinary recovery of expended nutrients can provide an objective measure of short-term nutrient consumption for certain nutrients and, when applied to a subset of a study cohort, can be used to calibrate corresponding self-report nutrient consumption assessments. A nonstandard measurement error model that makes provision for systematic error and subject-specific error, along with the usual independent random error, is needed for the self-report data. Three estimation procedures for hazard ratio (Cox model) parameters are extended for application to this more complex measurement error structure. These procedures are risk set regression calibration, conditional score, and nonparametric corrected score. An estimator for the cumulative baseline hazard function is also provided. The performance of each method is assessed in a simulation study. The methods are then applied to an example from the Women's Health Initiative Dietary Modification Trial.  相似文献   

9.
10.
    
This article presents two‐component hierarchical Bayesian models which incorporate both overdispersion and excess zeros. The components may be resultants of some intervention (treatment) that changes the rare event generating process. The models are also expanded to take into account any heterogeneity that may exist in the data. Details of the model fitting, checking and selecting alternative models from a Bayesian perspective are also presented. The proposed methods are applied to count data on the assessment of an efficacy of pesticides in controlling the reproduction of whitefly. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
    
Sugar EA  Wang CY  Prentice RL 《Biometrics》2007,63(1):143-151
Regression calibration, refined regression calibration, and conditional scores estimation procedures are extended to a measurement model that is motivated by nutritional and physical activity epidemiology. Biomarker data, available on a small subset of a study cohort for reasons of cost, are assumed to adhere to a classical measurement error model, while corresponding self-report nutrient consumption or activity-related energy expenditure data are available for the entire cohort. The self-report assessment measurement model includes a person-specific random effect, the mean and variance of which may depend on individual characteristics such as body mass index or ethnicity. Logistic regression is used to relate the disease odds ratio to the actual, but unmeasured, dietary or physical activity exposure. Simulation studies are presented to evaluate and contrast the three estimation procedures, and to provide insight into preferred biomarker subsample size under selected cohort study configurations.  相似文献   

12.
    
Binomial regression models are commonly applied to proportion data such as those relating to the mortality and infection rates of diseases. However, it is often the case that the responses may exhibit excessive zeros; in such cases a zero‐inflated binomial (ZIB) regression model can be applied instead. In practice, it is essential to test if there are excessive zeros in the outcome to help choose an appropriate model. The binomial models can yield biased inference if there are excessive zeros, while ZIB models may be unnecessarily complex and hard to interpret, and even face convergence issues, if there are no excessive zeros. In this paper, we develop a new test for testing zero inflation in binomial regression models by directly comparing the amount of observed zeros with what would be expected under the binomial regression model. A closed form of the test statistic, as well as the asymptotic properties of the test, is derived based on estimating equations. Our systematic simulation studies show that the new test performs very well in most cases, and outperforms the classical Wald, likelihood ratio, and score tests, especially in controlling type I errors. Two real data examples are also included for illustrative purpose.  相似文献   

13.
The TM algorithm for maximising a conditional likelihood function   总被引:1,自引:0,他引:1  
  相似文献   

14.
    
  相似文献   

15.
16.
When analyzing Poisson count data sometimes a high frequency of extra zeros is observed. The Zero‐Inflated Poisson (ZIP) model is a popular approach to handle zero‐inflation. In this paper we generalize the ZIP model and its regression counterpart to accommodate the extent of individual exposure. Empirical evidence drawn from an occupational injury data set confirms that the incorporation of exposure information can exert a substantial impact on the model fit. Tests for zero‐inflation are also considered. Their finite sample properties are examined in a Monte Carlo study.  相似文献   

17.
    
Adam Maidman  Lan Wang 《Biometrics》2018,74(3):1104-1111
  相似文献   

18.
    
If a dependent variable in a regression analysis is exceptionally expensive or hard to obtain the overall sample size used to fit the model may be limited. To avoid this one may use a cheaper or more easily collected “surrogate” variable to supplement the expensive variable. The regression analysis will be enhanced to the degree the surrogate is associated with the costly dependent variable. We develop a Bayesian approach incorporating surrogate variables in regression based on a two‐stage experiment. Illustrative examples are given, along with comparisons to an existing frequentist method. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

19.
    
Li E  Zhang D  Davidian M 《Biometrics》2004,60(1):1-7
The relationship between a primary endpoint and features of longitudinal profiles of a continuous response is often of interest, and a relevant framework is that of a generalized linear model with covariates that are subject-specific random effects in a linear mixed model for the longitudinal measurements. Naive implementation by imputing subject-specific effects from individual regression fits yields biased inference, and several methods for reducing this bias have been proposed. These require a parametric (normality) assumption on the random effects, which may be unrealistic. Adapting a strategy of Stefanski and Carroll (1987, Biometrika74, 703-716), we propose estimators for the generalized linear model parameters that require no assumptions on the random effects and yield consistent inference regardless of the true distribution. The methods are illustrated via simulation and by application to a study of bone mineral density in women transitioning to menopause.  相似文献   

20.
Characterization of the negative binomial and gamma distributions by a conditional distribution and a linear regression, and the gamma distribution by the negative binomial distribution are given. An application to a random shock model is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号