首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM: In this work, the effect of supplementing liquid cellulase production media (CPM) with methylxanthines (aminophylline, caffeine and theophylline), with and without the addition of glucose, on the secretion of cellulases by Penicillium echinulatum strain 2HH (wild-type) and the derived mutant strain 9A02S1 was studied. METHODS AND RESULTS: When compared with unsupplemented CPM, both strains produced higher beta-glucosidase and filter paper activities (FPAs) in CPM supplemented with 1 micromol l(-1) of caffeine but lower activities with 5 micromol l(-1) of caffeine. With theophylline only, strain 9A02S1 produced higher beta-glucosidase and FPAs, while aminophylline produced no effect on the cellulase activity of either strain. Supplementation of CPM with 0.5% (w/v) of glucose plus caffeine resulted in higher beta-glucosidase and FPAs being produced by strain 2HH, but not strain 9A02S1, than in CPM supplemented with 0.5% (w/v) of glucose only. CONCLUSIONS: These results indicate that different concentrations of caffeine and theophylline can increase the beta-glucosidase and FPAs produced by P. echinulatum strains 2HH and 9A02S1. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that some methylxanthines, in adequate concentration, can be used as media components to increase cellulase production.  相似文献   

2.
Enhanced Cellulase Production by a Mutant of Sclerotium rolfsii   总被引:1,自引:1,他引:0       下载免费PDF全文
A mutant of Sclerotium rolfsii CPC 142 that secretes about two times more filter paper-degrading activity in NM-2 growth medium in submerged cultures than the parent strain was obtained by ultraviolet mutagenesis of crushed sclerotia. The production of endo-β-glucanase in the mutant was affected to a lesser extent. With the parent strain, the addition of 3% rice bran to NM-2 medium was essential for optimal formation of cellulase, including filter paper-degrading activity. However, with the mutant the addition of rice bran to NM-2 medium increased the formation of endo-β-glucanase but not filter paper-degrading or cellobiase activity. An altered control mechanism for the production of filter paper-degrading enzymes is suggested. The genome(s) controlling the cellulase complex of enzymes in the UV-8 mutant is not under coordinate control.  相似文献   

3.
Mutagenesis and selection were applied to a strain of Penicillium echinulatum by treating conidia with hydrogen peroxide or 1,2,7,8-diepoxyoctane and then by incubating the conidia for 48 h in broth containing microcrystalline cellulose washed in 0.5% (w/v) aqueous 2-deoxyglucose before plating them onto cellulose agar containing 1.5% (w/v) glucose from which colonies showing the fastest production of halos of cellulose hydrolysis were selected. This process resulted in the isolation of two new cellulase-secreting P. echinulatum mutants: strain 9A02S1 showing increased cellulase secretion (2 IU ml−1, measured as filter paper activity) in submerged culture in agitated flasks containing a mineral salts medium and 1% of cellulose, and strain 9A02D1, which proved more suitable for the production of cellulases in semisolid bran culture where it produced 23 IU of β-glucosidase per gram of wheat bran.  相似文献   

4.
5.
6.
This study evaluated the potential use of elephant grass biomass, a highly productive species, for cellulase and xylanase production by the cellulolytic mutant Penicillium echinulatum 9A02S1 in submerged cultivation, using untreated biomass, biomass pretreated with different concentrations of NaOH, H2SO4 or NH4OH, or biomass pretreated with H2O at 121 °C. For filter paper activity, all cultivation carried out with pretreated elephant grass under the evaluated conditions showed superior activity when compared with the control (untreated elephant grass). The activities of endoglucanases and β-glucosidases were higher in the cultivation prepared from pretreated samples than the control made with cellulose (Celuflok®). Without pretreatment, elephant grass can be used for xylanase production, enabling similar activities to those obtained in the cultivation with cellulose, reducing the enzyme production cost. These results indicate that the pretreatment of elephant grass, especially when pretreated with H2SO4, may be used as a partial or total replacement for cellulose to cellulase production, and untreated elephant grass may be used for xylanase production.  相似文献   

7.
A mutant strain EMS-1 ofSclerotium rolfsii lacking the ability to develop mature sclerotia was isolated following chemical mutagenesis of macerated sclerotia with ethyl methane-sulfonate. The mutant failed to form sclerotia even in the presence of lactose, threonine or iodo-acetic acid which promoted sclerotial development in the wild strain and the UV-8 mutant. EMS-1 exhibited higher (1.5 – 3.0 times) cellulase and hemicellulase activity compared to the wild strain. Possible correlation between sclerotial morphogenesis and cellulase and/or oxalic acid production is discussed.  相似文献   

8.
9.
Aims: To isolate the protoplasts from Penicillium sp. PT95 and carry out laser mutagenesis to attain high-yield mutant strain for carotenoid production. Methods and Results: The mycelial pellets of PT95 strain were digested with the lytic enzyme for 3 h in order to attain protoplasts. The prepared protoplasts were irradiated using helium neon (He–Ne) laser. Among all regenerated colonies isolated from irradiated protoplasts, five colonies proved to be able to form sclerotia. The five colonies were named as strains L01, L02, L03, L04 and L05, respectively. Whereas, among all regenerated colonies isolated from no-irradiated protoplasts, no colonies were found to form sclerotia. Strains L01, L02, L03, L04 and L05 showed higher carotenoid yield than the original strain in Czapek’s agar medium. Strain L05 gave the highest pigment yield of 381 μg per plate, which was 2·54 times higher than that of original strain. Conclusions: These results suggest that PT95 strain may be mutagenized using laser-irradiation to obtain higher-yield mutant strains for carotenoid production. Significance and Impact of the Study: These data prompted us to consider that several attempts should be made to improve carotenoid production in PT95 by strain selection using classical screening and mutagenesis techniques.  相似文献   

10.
Aims: To characterize the kinetics of growth, sugar uptake and xylitol production in batch and fed‐batch cultures for a xylitol assimilation‐deficient strain of Candida tropicalis isolated via chemical mutagenesis. Methods and Results: Chemical mutagenesis using nitrosoguanidine led to the isolation of the xylitol‐assimilation deficient strain C. tropicalis SS2. Shake‐flask fermentations with this mutant showed a sixfold higher xylitol yield than the parent strain in medium containing 25 g l?1 glucose and 25 g l?1 xylose. With 20 g l?1 glycerol, replacing glucose for cell growth, and various concentrations of xylose, the studies indicated that the mutant strain resulted in xylitol yields from xylose close to theoretical. Under fully aerobic conditions, fed‐batch fermentation with repeated addition of glycerol and xylose resulted in 3·3 g l?1 h?1 xylitol volumetric productivity with the final concentration of 220 g l?1 and overall yield of 0·93 g g?1 xylitol. Conclusions: The xylitol assimilation‐deficient mutant isolated in this study showed the potential for high xylitol yield and volumetric productivity under aerobic conditions. In the evaluation of glycerol as an alternative low‐cost nonfermentable carbon source, high biomass and xylitol yields under aerobic conditions were achieved; however, the increase in initial xylose concentrations resulted in a reduction in biomass yield based on glycerol consumption. This may be a consequence of the role of an active transport system in the yeast requiring increasing energy for xylose uptake and possible xylitol secretion, with little or no energy available from xylose metabolism. Significance and Impact of the Study: The study confirms the advantage of using a xylitol assimilation‐deficient yeast under aerobic conditions for xylitol production with glycerol as a primary carbon source. It illustrates the potential of using the xylose stream in a biomass‐based bio‐refinery for the production of xylitol with further cost reductions resulting from using glycerol for yeast growth and energy production.  相似文献   

11.
A mutant strain of Citrobacter freundii capable of elevated 3-hydroxypropionaldehyde production from glycerol was isolated using chemical mutagenesis and a screening protocol. The protocol involved screening mutagenized bacterial cells on solid minimal medium containing 5 % (v/v) glycerol. Colonies were picked onto duplicate solid minimal medium plates and one plate was stained with 1 % (w/v) phloroglucinol. Those colonies staining red were further screened and a mutant, HPAO-1, was identified. The mutant strain produced a several-fold higher 3-hydroxypropionaldehyde concentration than did the parent strain when grown on 5 % (v/v) glycerol. The ratio of culture volume to flask volume influenced 3-hydroxypropionaldehyde production by the mutant cells compared to the parent cells. Aldehyde production was highest when the mutant strain was grown on 5 % (v/v) glycerol at a ratio of culture volume to flask volume of 1:3 or 1:12.5.  相似文献   

12.
A mutant of Clostridium thermocellum isolated after UV mutagenesis and selection for resistance to fluoropyruvate was found to be asporogenous and ethanol tolerant. The mutant was also an ethanol hyperproducer, able to ferment 63 g of cellulose into 14.5 g of ethanol per liter of medium. The ratio of ethanol to total organic acids produced by the mutant was increased, and H2 production was decreased. Culture conditions were optimized for ethanol production by the new strain.  相似文献   

13.
Aims: We undertook to improve an industrial Saccharomyces cerevisiae strain by derepressing it for maltose utilization in the presence of high glucose concentrations. Methods and Results: A mutant was obtained from an industrial S. cerevisiae strain following random UV mutagenesis and selection on maltose/5‐thioglucose medium. The mutant acquired the ability to utilize glucose simultaneously with maltose and possibly also sucrose and galactose. Aerobic sugar metabolism was still largely fermentative, but an enhanced respirative metabolism resulted in a 31% higher biomass yield on glucose. Kinetic characterization of glucose transport in the mutant revealed the predominance of the high‐affinity component. Northern blot analysis showed that the mutant strain expresses only the HXT6/7 gene irrespective of the glucose concentration in the medium, indicating a severe deregulation in the induction/repression pathways modulating HXT gene expression. Interestingly, maltose‐grown cells of the mutant display inverse diauxy in a glucose/maltose mixture, preferring maltose to glucose. Conclusion: In the mutant here reported, the glucose transport step seems to be uncoupled from downstream regulation, because it seems to be unable to sense abundant glucose, via both repression and induction pathways. Significance and Impact of the Study: We report here the isolation of a S. cerevisiae mutant with a novel derepressed phenotype, potentially interesting for the industrial fermentation of mixed sugar substrates.  相似文献   

14.
In this study, atmospheric and room temperature plasma and ultraviolet mutagenesis was studied for astaxanthin overproducing mutant. Phaffia rhodozyma mutant Y1 was obtained from the selection plate with 120 μmol/L diphenylamine as selection agent, and its carotenoid concentration and content were 54.38 mg/L and 5.38 mg/g, which were 19.02 % and 21.20 % higher than that of the original strain, respectively. Sugarcane bagasse hydrolysate was used for astaxanthin production by mutant Y1 at 22 °C and 220 rpm for 96 h, and the biomass and carotenoid concentration reached 12.65 g/L and 88.57 mg/L, respectively. Ultrasonication and cellulase were used to break cell wall and the parameters were optimized, achieving an astaxanthin extraction rate of 96.01 %. The present work provided a novel combined mutagenesis method for astaxanthin overproducing mutant and a green cell wall disruption process for astaxanthin extraction, which would play a solid foundation on the development of natural astaxanthin.  相似文献   

15.
An Hg2+-sensitive mutant strain was isolated from an Hg2+-tolerant bacterium Pseudomonas oleovorans G-1 strain by mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. The Hg2+-sensitive mutant strain was about 10-times as sensitive to Hg2+ as the parent strain. Moreover, the mutant strain was considerably more sensitive to Cr6+ than the parent strain, but it did not show an appreciable change in sensitivity to Cd2+ and Cu2+. The mutant strain was considerably more sensitive to antibiotics achromycin, chloramphenicol and streptomycin than the parent strain. A more rigid structure was observed in the cell envelope of the mutant strain than the parent strain under transmission electron microscope. Higher amounts of DNA but less protein and RNA were found in the mutant strain compared to the parent strain. Disc electrophoretic patterns showed some differences in protein bands between the parent and mutant strain.  相似文献   

16.
An actinomycete producing oil‐like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The 1H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography–mass spectrometry (GC‐MS) analysis, the fatty acid methyl esters were mainly composed of C14‐C16 long‐chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch.

Significance and Impact of the Study

Nowadays, production of biodiesel is based on plant oils, animal fats, algal oils and microbial oils. Lipid mostly consists of triacylglycerols (TAG), and conversion of these lipids into fatty acid short‐chain alcohol esters (methanol or ethanol) is the final step in biodiesel production. In this study, an oil‐producing Streptomyces strain was isolated from sheep faeces. The oil was composed of C14‐C16 long‐chain fatty acid methyl esters, triglycerides and monoglycerides. This is the first isolated strain‐producing biodiesel (FAME) directly from starch. Due to showing cellulase and xylanase activities, the strain would be helpful for converting renewable lignocellulose into biodiesel directly.  相似文献   

17.
Ten strains of Thermomyces lanuginosus from various culture collections were evaluated for extracellular endo‐β‐1,4‐xylanase production. The best xylanase producer (5771±173 nkat/mL) T. lanuginosus SK, was subjected to UV and N‐methyl‐N‐nitro‐N‐nitrosoguanidine mutagenesis. A mutant strain T. lanuginosus MC134, that showed on oatspelts xylan a 1.5 fold higher xylanase production than the parent strain SK, was subjected to a study of the regulation of xylanase synthesis during growth on various carbohydrates and during induction in glucose‐grown cells. In the growth experiments the highest production of xylanase was observed in the presence of xylans, however, an appreciable amount of the enzyme, about 10%, was also produced during growth on xylose. Xylobiose was found to be the most efficient xylanase inducer in the glucose‐grown cells. Its induction efficiency was followed by xylose, beechwood and birchwood xylan. Xylanase induction by polysaccharides started several hours later but proceeded for a longer time than that induced by the low molecular mass inducers, indicating that the polysaccharides serve as more sustainable source of inducers and that they have to be first hydrolyzed by the low level of constitutively synthesized xylanase. The repression of the induction of xylanase by glucose confirmed that the xylanase synthesis in the mutant strain is similar to the parent strain and exhibits an induction‐repression regulation mechanism.  相似文献   

18.
Microbial mutation breeding has been widely used because it is one of the most efficient and practical breeding strategies in the fermentation industry. However, different mutagenesis methods cause various degrees of DNA damage to individual microorganisms, which lead to diverse characteristics of the mutants. In this study, the effects of four different mutagenesis methods on the mutation breeding of Streptomyces avermitilis for improving avermectin B1a production were investigated with an optimized liquid microtiter plate (MTP) culture system. First, an effective and feasible MTP system for mutant strain screening was evaluated through the optimization of the oxygen transfer rate and rapid titer determination. Then, high energy carbon heavy ion irradiation, diethyl sulfate, ultraviolet- (UV) irradiation combined with lithium chloride, and sodium nitrite were used as the mutagens for mutation breeding, respectively. Results showed that carbon heavy ion irradiation had the advantages of possessing the highest positive mutation rate and mean-production of positive mutant strains in the first generation. Sodium nitrite treatment resulted in mutant strains with better inherited stability than the other three methods. Through the combined treatment of carbon heavy ion irradiation and sodium nitrite treatment, an inheritstable mutant S. avermitilis S-233 with high avermectin B1a production was successfully obtained. The fermentation verification in a 500-liter (L) bioreactor demonstrated that the avermectin B1a produced by mutant S. avermitilis S-233 reached 6818 μg/mL, which was 23.8% higher than that of parent strains.  相似文献   

19.
A strain improvement program was initiated based on mutagenesis with the goal of commercial production of eicosapentaenoic acid (EPA)from EPA-overproducing microalgal strains. Two rounds of mutation and selection were conducted using Phaeodactylum tricornutum Bohlin UTEX #640 as the parent strain. After the first round of mutagenesis, a putative mutant (provisionally labeled 114) was obtained. The EPA content (% of dry weight) of this mutant strain was 37% higher than that of the wild type. 114 was further mutated and another putative mutant (provisionally called II242) was isolated, the EPA content of which was 44% higher than that of the wild type. When cultured with aeration in 1-L flasks, EPA content of the wild type and putative mutants 114 and II242 was, 17.3 mg · g?1, 31.5mg · g?1, and 38.6 mg · g?1 dry biomass, respectively. EPA productivity was 3.48 mg · L?1· d?1 4.01 mg · L?1· d?1, and 4.98 mg · L?1· d?1 respectively. These figures compare favorably with many other promising EPA-producing microorganisms and suggest that the use of a single methodology such as mutation and selection is a way to improve the polyunsaturated fatty acid content of microalgae and other microorganisms.  相似文献   

20.
Citric acid production from sugar cane molasses byAspergillus niger NIAB 280 was studied in a batch cultivation process. A maximum of 90 g/L total sugar was utilized in citric acid production medium. From the parental strainA. niger, mutant strains showing resistance to 2-deoxyglucose in Vogal's medium containing molasses as a carbon source were induced by γ-irradiation. Among the new series of mutant strains, strain RP7 produced 120 g/L while the parental strain produced 80 g/L citric acid (1.5-fold improvement) from 150 g/L of molasses sugars. The period of citric acid production was shortened from 10 d for the wild-type strain to 6–7 d for the mutant strain. The efficiency of substrate uptake rate with respect to total volume substrate consumption rate,Q s (g per L per h) and specific substrate consumption rate,q s (g substrate per g cells per h) revealed that the mutant grew faster than its parent. This indicated that the selected mutant is insensitive to catabolite repression by higher concentrations of sugars for citric acid production. With respect to the product yield coefficient (Y p/x), volume productivity (Q p) and specific product yields (q p), the mutant strain is significantly (p≤0.05) improved over the parental strain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号