首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Royal HD 《Radiation research》2000,154(6):719;discussion 723-719;discussion 724
  相似文献   

4.

This article aims at comparing reference methods for the assessment of cancer risk from exposure to genotoxic carcinogen chemical substances and to ionizing radiation. For chemicals, cancer potency is expressed as a toxicological reference value (TRV) based on the most sensitive type of cancer generally observed in animal experiments of oral or inhalation exposure. A dose–response curve is established by modelling experimental data adjusted to apply to human exposure. This leads to a point of departure from which the TRV is derived as the slope of a linear extrapolation to zero dose. Human lifetime cancer risk can then be assessed as the product of dose by TRV and it is generally considered to be tolerable in a 10–6–10–4 range for the public in a normal situation. Radiation exposure is assessed as an effective dose corresponding to a weighted average of energy deposition in body organs. Cancer risk models were derived from the epidemiological follow-up of atomic bombing survivors. Considering a linear-no-threshold dose-risk relationship and average baseline risks, lifetime nominal risk coefficients were established for 13 types of cancers. Those are adjusted according to the severity of each cancer type and combined into an overall indicator denominated radiation detriment. Exposure to radiation is subject to dose limits proscribing unacceptable health detriment. The differences between chemical and radiological cancer risk assessments are discussed and concern data sources, extrapolation to low doses, definition of dose, considered health effects and level of conservatism. These differences should not be an insuperable impediment to the comparison of TRVs with radiation risk, thus opportunities exist to bring closer the two types of risk assessment.

  相似文献   

5.
Twelve patients with recurrent supratentorial gliomas were treated with implanted 125I seeds. The interval from initial surgery to interstitial radiation ranged from 3 months to 9 years. The techniques for brachytherapy included volume implantation by craniotomy in one, stereotactic implantation with low-activity seeds in 7 and high-activity seeds in 4 patients. The total dose received ranged from 5,500 to 27,000 cGy. CT scans performed sequentially on all patients showed progressive attenuation in areas previously enhancing, suggestive of tumor necrosis produced by the interstitial sources. The mean and median survival of these patients was 23 and 22 weeks, with the 4 most recent patients still alive.  相似文献   

6.

BACKGROUND

Little is known about the etiology of nonsyndromic microtia. This study investigated the hypothesis that microtia is caused by vascular disruption.

METHODS

The study analyzed data from the population‐based National Birth Defects Prevention Study (NBDPS) for deliveries between 1997 and 2005. Four hundred eleven nonsyndromic cases of microtia, with or without additional defects, were compared to 6560 nonmalformed infants with respect to maternal exposures to vasoactive medications and smoking during the periconceptional period and conditions that have previously been associated with vascular events (multiple gestation, maternal history of type 1, type 2, or gestational diabetes, and hypertension). Odds ratios (ORs) were estimated with multivariable models, controlling for the effects of race/ethnicity, education, periconceptional folic acid use, and study center.

RESULTS

Risk estimates for vasoactive medications and smoking were not meaningfully increased. Maternal type 1/2 diabetes was diagnosed before or during the index pregnancy in 4% and 1% of cases, respectively, compared to 1% and 0.05% of controls; the adjusted OR for these two groups combined was 7.2 (95% confidence interval [CI], 3.9–13.1). Gestational diabetes was observed for 9% of cases and 6% of controls; the OR was moderately elevated (OR, 1.4; 95% CI, 0.9–2.0). ORs were also increased for multiple gestations (OR, 2.5; 95% CI, 1.5–4.2) and pre‐existing hypertension (OR, 1.6; 95% CI, 1.0–2.5).

CONCLUSIONS

Because ORs were only elevated for diabetes and not for vasoactive exposures or other potential vascular events, findings suggest that some microtia occurrences may be part of the diabetic embryopathy rather than manifestations of vascular disruption. Birth Defects Research (Part A), 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
10.
11.
Ron E  Brenner A 《Radiation research》2010,174(6):877-888
The thyroid gland is one of the most radiosensitive human organs. While it is well known that radiation exposure increases the risk of thyroid cancer, less is known about its effects in relation to non-malignant thyroid diseases. The aim of this review is to evaluate the effects of high- and low-dose radiation on benign structural and functional diseases of the thyroid. We examined the results of major studies from cancer patients treated with high-dose radiotherapy or thyrotoxicosis patients treated with high doses of iodine-131, patients treated with moderate- to high-dose radiotherapy for benign diseases, persons exposed to low doses from environmental radiation, and survivors of the atomic bombings who were exposed to a range of doses. We evaluated radiation effects on structural (tumors, nodules), functional (hyper- and hypothyroidism), and autoimmune thyroid diseases. After a wide range of doses of ionizing radiation, an increased risk of thyroid adenomas and nodules was observed in a variety of populations and settings. The dose response appeared to be linear at low to moderate doses, but in one study there was some suggestion of a reduction in risk above 5 Gy. The elevated risk for benign tumors continues for decades after exposure. Considerably less consistent findings are available regarding functional thyroid diseases including autoimmune diseases. In general, associations for these outcomes were fairly weak, and significant radiation effects were most often observed after high doses, particularly for hypothyroidism. A significant radiation dose-response relationship was demonstrated for benign nodules and follicular adenomas. The effects of radiation on functional thyroid diseases are less clear, partly due to the greater difficulties encountered in studying these diseases.  相似文献   

12.
Paternal occupational exposures and the risk of Down syndrome.   总被引:3,自引:1,他引:2       下载免费PDF全文
An exploratory case-control study of paternal occupation as a risk factor for Down syndrome was conducted. With the use of the British Columbia Health Surveillance Registry, 1,008 cases of live-born Down syndrome were identified for the period 1952-73. Two controls were matched to each case by using the birth files of British Columbia. Paternal occupation was obtained from the birth notice. Elevated maternal age-adjusted relative risks of Down syndrome were found for fathers employed as janitors (odds ratio [OR] = 3.26; 95% confidence interval [C.I.] = 1.02-10.44); mechanics (OR = 3.27; C.I. = 1.57-6.80); farm managers/workers (OR = 2.03; C.I. = 1.25-3.03); material-moving equipment operators (OR = 1.88; C.I. = 0.93-3.82); food processors (OR = 1.79; C.I. = 0.96-3.31); sheet-metal workers, iron workers, and other metalworkers (OR = 1.57; C.I. = 0.92-2.69); and sawmill workers (OR = 1.43; C.I. = 0.90-2.66). This large study provides new leads for further evaluation of the role of paternal exposures in the etiology of Down syndrome.  相似文献   

13.
The traditional thinking has been that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. This implies that: 1) biological effects occur only in irratiated cells, 2) radiation traversal through the nucleus of the cell is a prerequisite to produce a biological response, and 3) DNA is the target molecule in the cell. Evidence has been emerging, however, for non-DNA targeted effects of radiation; that is, effects including mutations, chromosomal aberrations, and changes in gene expression which occur in cells that in themselves receive no radiation exposure. Two of these phenomena will be described in this paper. The first is radiation-induced genomic instability whereby biological effects, including elevated frequencies of mutations and chromosomal aberrations, arise in the distant descendants of irradiated cells. The second phenomenon has been termed the "bystander effect", whereby in a mixed population of irradiated and nonirradiated cells, biological effects arise in those cells that receive no radiation exposure. The damage signals are transmitted from cell to cell through gap junction channels, and the genetic effects observed in bystander cells appear to result from an upregulation of oxidative stress. The possible influence of these non-targeted effects of radiation of the respounse to low-dose exposures is discussed.  相似文献   

14.
Summary There are situations in which the exposure to more than one agent results in an enhanced risk for the exposed organism, that is in which the observed effect exceeds the effect expected from the addition of the individual effects. Our knowledge of such hazards is rather limited, in particular for those agents that occur in the environment of man. When early mouse embryos in vitro were exposed to ionizing radiation and mercuric chloride, the observed risk was higher than expected from the individual effects. This increase in risk was due to an interaction between mechanisms induced by ionizing radiation and mercury. To gain some more insight into the mode of interaction, the time requirements of mercury exposure were studied. The amount of interaction did not depend on mercury exposure before or during irradiation. However, to achieve an enhanced risk, exposure had to start as soon as possible after irradiation and had to last as long as possible. This time dependence suggests that if inhibition of DNA-repair is involved in the mechanism of interaction at all, then there must be an additional late process that is also impaired by mercury.Dedicated to Prof. W. Jacobi on the occasion of his 60th birthday  相似文献   

15.
Epidemiological studies of medical radiation workers have found excess risks of leukemia, skin and female breast cancer in those employed before 1950 but little consistent evidence of cancer risk increases subsequently. Occupational radiation-related dose-response data and recent and lifetime cancer risk data are limited for radiologists and radiologic technologists and lacking for physicians and technologists performing fluoroscopically guided procedures. Survey data demonstrate that occupational doses to radiologists and radiologic technologists have declined over time. Eighty mostly small studies of cardiologists and fewer studies of other physicians reveal that effective doses to physicians per interventional procedure vary by more than an order of magnitude. For medical radiation workers, there is an urgent need to expand the limited information on average annual, time-trend and organ doses from occupational radiation exposures and to assess lifetime cancer risks of these workers. For physicians and technologists performing interventional procedures, more information about occupational doses should be collected and long-term follow-up studies of cancer and other serious disease risks should be initiated. Such studies will help optimize standardized protocols for radiologic procedures, determine whether current radiation protection measures for medical radiation workers are adequate, provide guidance on cancer screening needs, and yield valuable insights on cancer risks associated with chronic radiation exposure.  相似文献   

16.
Exposure to infectious microbes is a likely confounder after a nuclear terrorism event. In combination with radiation, morbidity and mortality from an infection may increase significantly. Pulmonary damage after low-dose low-LET irradiation is characterized by an initial diffuse alveolar inflammation. By contrast, inhaled fungal spores produce localized damage around pulmonary bronchioles. In the present study, we assessed lung injury in C57BL/6 mice after combined exposures to whole-body X radiation and inhaled fungal spores. Either animals were exposed to Aspergillus spores and immediately irradiated with 2 Gy, or the inoculation and irradiation were separated by 8 weeks. Pulmonary injury was assessed at 24 and 48 h and 1, 2, 4, 8, and 24 weeks later using standard H&E-stained sections and compared with sham-treated age-matched controls. Immunohistochemistry for invasive inflammatory cells (macrophages, neutrophils and B and T lymphocytes) was performed. A semi-quantitative assessment of pulmonary injury was made using three distinct parameters: local infiltration of inflammatory cells, diffuse inflammation, and thickening and distortion of alveolar architecture. Radiation-induced changes in lung architecture were most evident during the first 2 weeks postexposure. Fungal changes were seen over the first 4 weeks. Simultaneous combined exposures significantly increased the duration of acute pulmonary damage up to 24 weeks (P < 0.01). In contrast, administration of the fungus 8 weeks after irradiation did not produce enhanced levels of acute pulmonary damage. These data imply that the inhalation of fungal spores at the time of a radiation exposure alters the susceptibility of the lungs to radiation-induced injury.  相似文献   

17.
Exposures in space consist of low-level background components from galactic cosmic rays (GCR), occasional intense-energetic solar-particle events, periodic passes through geomagnetic-trapped radiation, and exposure from possible onboard nuclear-propulsion engines. Risk models for astronaut exposure from such diverse components and modalities must be developed to assure adequate protection in future. NASA missions. The low-level background exposures (GCR), including relativistic heavy ions (HZE), will be the ultimate limiting factor for astronaut career exposure. We consider herein a two-mutation, initiation-promotion, radiation-carcinogenesis model in mice in which the initiation stage is represented by a linear kinetics model of cellular repair/misrepair, including the track-structure model for heavy ion action cross-sections. The model is validated by comparison with the harderian gland tumor experiments of Alpen et al. for various ion beams. We apply the initiation-promotion model to exposures from galactic cosmic rays, using models of the cosmic-ray environment and heavy ion transport, and consider the effects of the age of the mice prior to and after the exposure and of the length of time in space on predictions of relative risk. Our results indicate that biophysical models of age-dependent radiation hazard will provide a better understanding of GCR risk than models that rely strictly on estimates of the initial slopes of these radiations.Submitted paper presented at the International Symposium on Heavy Ion Research: Space, Radiation Protection and Therapy, Sophia-Antipolis, France, 21–24 March 1994  相似文献   

18.
19.
We present a computational model for calculating the yield of radiation-induced chromosomal aberrations in human cells based on a stochastic Monte Carlo approach and calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. A previously developed DNA-fragmentation model for high- and low-LET radiation called the NASARadiationTrackImage model was enhanced to simulate a stochastic process of the formation of chromosomal aberrations from DNA fragments. The current version of the model gives predictions of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G(0)/G(1) cell cycle phase during the first cell division after irradiation. As the model can predict smaller-sized deletions and rings (<3 Mbp) that are below the resolution limits of current cytogenetic analysis techniques, we present predictions of hypothesized small deletions that may be produced as a byproduct of properly repaired DNA double-strand breaks (DSB) by nonhomologous end-joining. Additionally, the model was used to scale chromosomal exchanges in two or three chromosomes that were obtained from whole-chromosome FISH painting analysis techniques to whole-genome equivalent values.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号