首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A thermostable inhibition of ATP-protein phosphotransferase (EC 2.7.1.37) (protein kinase) which is present in crude tissue extracts has been resolved by gel chromatography (Sephadex G-100) into two molecular forms. These two forms will be referred to as type I and type II inhibitor. The type I inhibitor (Mr approximately or equal to 24,000) is specific for cAMP-dependent protein kinase and corresponds to the inhibitor described earlier (Walsh, D. A., Ashby, C. D., Gonzalez, C., Calkins, D., Fisher, E. H., and Krebs, E. G. (1971) J. Biol. Chem. 246, 1977-1985). The type II inhibitor (Mr approximately or equal to 15,000) competes for the enzyme with various substrate proteins (histone, alpha-casein, and Leu-Arg-Arg-Ala-Ser-Leu-Gly (kemptide). The type II inhibitor blocks protein phosphorylation catalyzed by several types of protein kinases (cAMP- and cGMP-dependent or cyclic nucleotide-independent protein kinases). The type II inhibitor from rat brain has been purified 1500-fold; this protein is thermostable, has acidic characteristics, and does not require Ca2+ ions for its activity. Different ratios and concentrations of type I and type II inhibitors of protein kinase are found in rat skeletal muscle, pancreas, cerebellum and corpus striatum, and in lobster tail muscle.  相似文献   

2.
Cyclic nucleotide-dependent protein kinases in airway smooth muscle   总被引:6,自引:0,他引:6  
Because of the potential importance of cyclic nucleotide-dependent protein kinases in the regulation of airway smooth muscle tone, we have examined some of the characteristics of these enzymes in the soluble fraction of canine trachealis homogenates. In the absence of added cAMP, the heat-stable cAMP-dependent protein kinase inhibitor (PKI) abolished only a half of the 32P incorporation into mixed histones. The remaining activity appeared to be contributed by a cyclic nucleotide-independent enzyme. Phosphotransferase activity was enhanced 5-fold by 5 microM cAMP but only 70% of the cAMP-stimulated activity could be inhibited by PKI. The sensitivity of the cyclic nucleotide-dependent, PKI-resistant enzyme to cAMP, cGMP, and Mg2+ indicated that it was cGMP-dependent protein kinase. Because of the large amount of cyclic nucleotide-independent activity, and the ability of cAMP to activate cGMP-dependent protein kinase, the traditional "-cAMP/+cAMP" ratio did not provide an accurate assessment of the in vivo activation state of cAMP-dependent protein kinase. However, a modified assay was developed which allowed the precise measurement of cAMP-dependent, cGMP-dependent, and cyclic nucleotide-independent protein kinase activities. Using this new method, the cAMP-dependent protein kinase activity ratio of 0.239 in untreated trachealis strips was increased to 0.355 and 0.386 by prior exposure of the intact tissue to the smooth muscle relaxants isoproterenol and prostaglandin E2, respectively. The results of this study are consistent with the proposed role of cAMP-dependent protein kinase in the regulation of smooth muscle contractile function.  相似文献   

3.
A stimulatory modulator-requiring cyclic nucleotide-independent protein kinase was purified over 400-fold from the extract of fetal calf hearts by the steps of DEAE-cellulose and Sephadex G-100 chromatographies. The enzyme was activated by stimulatory modulator of cGMP-dependent protein kinase. Inhibitory modulator (protein inhibitor) of cAMP-dependent protein kinase, calcium, phosphatidyl serine and cyclic nucleotides were without effect. The enzyme (3.2 S) was much smaller than the holoenzymes of cGMP- and cAMP-dependent protein kinases. This new species of enzyme thus appears to be similar to the putative catalytic subunit of cGMP-dependent protein kinase previously reported.  相似文献   

4.
cAMP- and cGMP-dependent protein kinases are homologous proteins and are predicted to exhibit very similar three-dimensional structures. Their cyclic nucleotide binding domains share a high degree of amino acid sequence identity. cAMP- and cGMP-dependent protein kinases are activated relatively specifically by cAMP and cGMP, respectively; and a single alanine-threonine difference between cAMP- and cGMP-binding domains partially accounts for this specificity. Thus, it would be expected that cAMP and cGMP mediate separate physiological effects. However, owing in part to the lack of absolute specificity of either enzyme and to the relatively high level of cAMP or cGMP in certain tissues, it is also possible that either cyclic nucleotide could cross-activate the other kinase. Increases in either cAMP or cGMP cause pig coronary artery relaxation. However, only cGMP-dependent protein kinase specific cyclic nucleotide analogues are very effective in causing relaxation, and cAMP elevation in arteries treated with isoproterenol or forskolin activates cGMP-dependent protein kinase, in addition to cAMP-dependent protein kinase. Conversely, increases in either cAMP or cGMP cause Cl- secretion in T-84 colon carcinoma cells, and the cGMP level in T-84 cells can be elevated sufficiently by bacterial enterotoxin to activate cAMP-dependent protein kinase. These results imply specific regulation of cAMP- and cGMP-dependent protein kinases by the respective cyclic nucleotides, but either cyclic nucleotide is able to cross-activate the other kinase in certain tissues.  相似文献   

5.
We have examined cyclic nucleotide-regulated phosphorylation of the neuronal type I inositol 1,4,5-trisphosphate (IP3) receptor immunopurified from rat cerebellar membranes in vitro and in rat cerebellar slices in situ. The isolated IP3 receptor protein was phosphorylated by both cAMP- and cGMP-dependent protein kinases on two distinct sites as determined by thermolytic phosphopeptide mapping, phosphopeptide 1, representing Ser-1589, and phosphopeptide 2, representing Ser-1756 in the rat protein (Ferris, C. D., Cameron, A. M., Bredt, D. S., Huganir, R. L., and Snyder, S. H. (1991) Biochem. Biophys. Res. Commun. 175, 192-198). Phosphopeptide maps show that cAMP-dependent protein kinase (PKA) labeled both sites with the same time course and same stoichiometry, whereas cGMP-dependent protein kinase (PKG) phosphorylated Ser-1756 with a higher velocity and a higher stoichiometry than Ser-1589. Synthetic decapeptides corresponding to the two phosphorylation sites (peptide 1, AARRDSVLAA (Ser-1589), and peptide 2, SGRRESLTSF (Ser-1756)) were used to determine kinetic constants for the phosphorylation by PKG and PKA, and the catalytic efficiencies were in agreement with the results obtained by in vitro phosphorylation of the intact protein. In cerebellar slices prelabeled with [32P]orthophosphate, activation of endogenous kinases by incubation in the presence of cAMP/cGMP analogues and specific inhibitors of PKG and PKA induced in both cases a 3-fold increase in phosphorylation of the IP3 receptor. Thermolytic phosphopeptide mapping of in situ labeled IP3 receptor by PKA showed labeling on the same sites (Ser-1589 and Ser-1756) as in vitro. In contrast to the findings in vitro, PKG preferentially phosphorylated Ser-1589 in situ. Because both PKG and the IP3 receptor are specifically enriched in cerebellar Purkinje cells, PKG may be an important IP3 receptor regulator in vivo.  相似文献   

6.
The regulatory subunit of the type I cAMP-dependent protein kinase (Rt) serves as a substrate for the phosphotransferase reaction catalyzed by cGMP-dependent protein kinase (Km = 2.2 microM). The reaction is stimulated by cGMP when RI . cAMP is the substrate, but not when nucleotide-free RI is used. The cGMP-dependent protein kinase catalyzes the incorporation of 2 mol of phosphate/mol of RI dimer in the presence of cAMP and a self-phosphorylation reaction to the extent of 4 mol of phosphate/mol of enzyme dimer. In the absence of cAMP, RI is a competitive inhibitor of the phosphorylation of histone H2B (Ki = 0.25 microM) and of the synthetic peptide substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly (Ki = 0.15 microM) by the cGMP-dependent enzyme. Nucleotide-free RI also inhibits the intramolecular self-phosphorylation of cGMP-dependent protein kinase. The inhibition of the phosphorylation reactions are reversed by cAMP. The catalytic subunit of cAMP-dependent protein kinase does not catalyze the phosphorylation of RIand does not significantly alter the ability of RI to serve as a substrate or an inhibitor of cGMP-dependent protein kinase. These observations are consistent with the concept that the cGMP- and cAMP-dependent protein kinases are closely related proteins whose functional domains may interact.  相似文献   

7.
Ovariectomized mice were injected daily for 20 days with saline, 17 beta-estradiol (1 microgram/day), progesterone (1 mg/day), or estrogen + progesterone. Mammary glands were removed, homogenized, and analyzed for DNA, cAMP, cGMP, cAMP-dependent protein kinase (kinase A), cGMP-dependent protein kinase (kinase G), tyrosyl kinase (kinase T), and epidermal growth factor-stimulated tyrosyl kinase (EGF-T). Estrogen and progesterone, administered singly, increased DNA, cAMP, kinase A, kinase T, and EGF-T. In addition, progesterone, administered alone or with estrogen, decreased kinase G activity. cGMP concentrations were not altered by estrogen or progesterone. No evidence of a synergism between estrogen and progesterone on the levels of the cyclic nucleotides and the activities of kinase enzyme was observed, although an additive effect of these steroids was seen. These data indicate that ovarian steroid-induced growth of mouse mammary glands is accompanied by significant changes in protein phosphorylation, i.e., increased cAMP-dependent protein phosphorylation and tyrosyl phosphorylation and decreased cGMP-dependent protein phosphorylation.  相似文献   

8.
J S Tash  M J Welsh  A R Means 《Cell》1980,21(1):57-65
Multiple forms of protein kinase inhibitor exist in mammalian testis. Specific antibodies to testicular protein kinase inhibitor (PKI) have been raised in sheep. The antibody to the smallest of the inhibitors (9300 daltons) has been purified by antigen-affinity chromatography and shown to give a precipitin band with the inhibitor by double immunodiffusion. The antibody does not recognize any of the subunits of cyclic nucleotide-dependent protein kinases, namely cGMP-dependent protein kinase or the catalytic or regulatory subunits from type I or type II cAMP-dependent protein kinases. The biological activity of the 9300 dalton PKI is blocked completely by a 5 fold molar excess of antibody. Furthermore, the antibody can also block the activity of all other forms of testicular PKI. Using the antibody in indirect immunofluorescence microscopy, PKI localization was examined during interphase and mitosis in a variety of cell types. Our observations indicate that PKI is localized on microtubules in the cytoplasmic microtubule complex during interphase and in the spindle apparatus during mitosis. We suggest that PKI may play a role in the cAMP-dependent regulation of microtubule structure and/or function.  相似文献   

9.
Synthetic peptides corresponding to the active domain of the heat-stable inhibitor protein of cAMP-dependent protein kinase (Cheng, H.-C., Kemp, B. E., Pearson, R. B., Smith, A. J., Misconi, L., Van Patten, S. M., and Walsh, D. A. (1986) J. Biol. Chem. 261, 989-992) were tested as inhibitors of cGMP-dependent protein kinase. The peptides themselves were not substrates. cGMP-dependent protein kinase activity was assayed using histone H2B and two synthetic peptide substrates. Consistent with previous observations of other peptide inhibitors of this enzyme (Glass, D. B. (1983) Biochem. J. 213, 159-164), the inhibitory peptides had no effect on the phosphorylation of histone H2B, but they competitively inhibited cGMP-dependent phosphorylation of the two peptide substrates. The parent inhibitor peptide, PKI(5-24)amide, and a series of analogs had Ki (or IC50) values for cGMP-dependent protein kinase in the range of 15-190 microM. In contrast to their effects on the cAMP-dependent protein kinase, the inhibitory peptides were substantially less potent with cGMP-dependent protein kinase, and potency was reduced by the presence of the NH2-terminal residues (residues 5-13). We conclude that the two protein kinases share a recognition of the basic amino acid cluster within the pseudosubstrate region of the peptide, but that the cGMP-dependent protein kinase does not recognize additional NH2-terminal determinants that make the inhibitor protein extremely potent toward the cAMP-dependent enzyme. Even- when tested at high concentrations and with peptide substrates, the native inhibitor protein did not inhibit cGMP-dependent protein kinase under assay conditions in which the peptides derived from it were inhibitory. Thus, the native inhibitor protein appears to have structural features which block interaction with the cGMP-dependent enzyme and enhance its selectivity for cAMP-dependent protein kinase.  相似文献   

10.
The levels of cAMP-dependent protein kinase (type I), or cGMP-dependent protein kinase, or protein I, and of a 23,000 MW substrate for the cGMP-dependent protein kinase were measured in cerebella from normal rats and in the cerebella from rats in which a selective loss of interneurons in the cerebellar cortex had been produced by X-irradiation. A decrease was observed in the concentrations of cAMP-dependent protein kinase and of protein I, whereas an increase was observed in the concentrations of cGMP-dependent protein kinase and of the 23,000 MW substrate. The data, taken together with the results of other studies, support the interpretation that cAMP-dependent protein kinase and protein I are distributed throughout the cerebellum, but that cGMP-dependent protein kinase and the 23,000 MW substrate are highly concentrated in Purkinje cells.  相似文献   

11.
In the present study the activities of three different protein kinase were determined in squamous cell carcinoma from the upper aero-digestive tract, and compared with the activities in normal oral mucosa. The protein kinases investigated are: a) cAMP-dependent protein kinase; b) cGMP-dependent protein kinase, and c) casein kinase II. The basal protein kinase activity, when histone IIa was used as substrate, was about 3-fold higher in tumors, as compared to normal mucosa, in the soluble fraction (32.0 +/- 4.2 and 10.9 +/- 2.4 pmol 32P/mg prot. X min, respectively). In the particulate fraction the basal protein kinase activity was about 9 times higher in tumors as compared to normal mucosa (19.4 +/- 5.2 and 2.1 +/- 0.3 pmol 32P/mg prot X min, respectively). The protein kinase activity in the presence of cyclic nucleotide (cAMP/cGMP) minus the basal protein kinase activity was taken as the cAMP- and the cGMP-dependent protein kinase activity, respectively. Maximal protein kinase activity was obtained in the presence of 0.5 microM of cyclic nucleotide both in squamous cell carcinoma and normal mucosa. In the cytosolic fraction the cAMP-dependent protein kinase activity was 33.9 +/- 13.0 pmol 32P/mg prot. X min in tumors, and 28.2 +/- 5.8 pmol 32P/mg prot. X min in normal tissue, after stimulation with 0.5 microM cAMP. The cGMP-dependent protein kinase activity was 5-10% of the cAMP-dependent protein kinase activity, and no concentration-dependent stimulation with cGMP was seen. The cGMP-dependent protein kinase activity in the presence of 0.5 microM cGMP was 2.4 +/- 1.3 and 1.8 +/- 0.6 pmol 32P/mg prot. X min in tumors and normal mucosa, respectively. Casein kinase II activity was determined only in the cytosolic fraction and was found to be 3-fold higher in tumors as compared to normal mucosa (31.8 +/- 5.2 and 8.6 +/- 3.5 pmol 32P/mg prot X min, respectively). This study shows a general increase in histone phosphorylation and casein kinase activity in neoplastic squamous epithelia compared to normal epithelia. No evidence for an increase in cyclic nucleotide dependent protein kinase activities in neoplastic squamous epithelia was found. This study thus supports the idea that phosphorylation/dephosphorylation reactions may play an important role in the control of cell growth, differentiation and proliferation.  相似文献   

12.
Leboulle G  Müller U 《FEBS letters》2004,576(1-2):216-220
The high cGMP sensitivity of cAMP-dependent protein kinase A (type II) (PKAII) from invertebrates led to the hypothesis that cGMP directly activates PKAII under physiological conditions. We tested this idea using PKAII holoenzyme purified from the honeybee brain in an assay with short stimulation times. In the presence of very low cAMP concentrations, we found a synergistic increase in PKAII activation by physiological cGMP concentrations. Cloning honeybee regulatory subunit RII and phylogenetic comparison of the two cyclic nucleotide-binding sites of RII reveal a high relation of domain A of insect RII with cGMP-binding domains of cGMP-dependent protein kinases.  相似文献   

13.
ATP and UTP induced a dual inotropic effect in rat left atria: first a decrease and then an increase in contractile tension were observed. PPADS, an antagonist of P2X receptors, inhibited positive inotropism induced by ATP and alpha,beta-meATP. Chiefly, we investigated intracellular mechanisms responsible for the positive inotropism. We tested cromakalim and glibenclamide, an activator and an inhibitor, respectively, of ATP-sensitive K(+) channels. These compounds did not influence the effects of ATP. IBMX, a phosphodiesterase inhibitor, and H-7, an inhibitor of protein kinase C and cAMP-dependent protein kinase, did not modify the inotropic effects of ATP. Instead, H-8, an inhibitor of cAMP- and cGMP-dependent protein kinases, strongly inhibited the positive effects of both ATP and UTP, suggesting the possible involvement of cGMP in the inotropism. Also, LY 83583, an inhibitor of cGMP production, reduced positive inotropism by alpha,beta-meATP, ATP and UTP. Moreover, 8-Br-cGMP (50 microM), a stable analogue of cGMP, inhibited positive inotropism by all nucleotides. Lastly, we determined intracellular cGMP levels by RIA; the cyclic nucleotide increased during positive inotropism induced by ATP and UTP. The results regarding positive inotropism suggest that: (a) ATP acts through P2X receptors, while UTP may act by P2X, but also through PPADS-insensitive receptors; and (b) changes in intracellular cGMP concentration are involved in this inotropic effect.  相似文献   

14.
K-252 compounds (K-252a and b isolated from Nocardiopsis sp. (1) and their synthetic derivatives) were found to inhibit cyclic nucleotide-dependent protein kinases and protein kinase C to various extents. The inhibitions were of the competitive type with respect to ATP. K-252a was a non-selective inhibitor for these three protein kinases with Ki values 18-25 nM. K-252b showed a comparable potency for protein kinase C (Ki, 20nM), whereas inhibitory potencies for cyclic nucleotide-dependent protein kinases were reduced. KT5720 and KT5822 selectively inhibited cAMP-dependent (Ki, 60nM) and cGMP-dependent (Ki, 2.4nM) protein kinases, respectively.  相似文献   

15.
A purified bovine lung cGMP-binding cGMP-specific phosphodiesterase (cG-BPDE) was rapidly phosphorylated by purified bovine lung cGMP-dependent protein kinase (cGK). Within a physiological concentration range, cGK catalyzed phosphorylation of cG-BPDE at a rate approximately 10 times greater than did equimolar concentrations of purified catalytic subunit of cAMP-dependent protein kinase (cAK). cG-BPDE was a poor substrate for either purified protein kinase C or Ca2+/calmodulin-dependent protein kinase II. Binding of cGMP to the cG-BPDE binding site was required for phosphorylation since (a) phosphorylation of cG-BPDE by the catalytic subunit of cAK was cGMP-dependent, (b) phosphorylation of cG-BPDE in the presence of a cGMP analog specific for activation of cGK was cGMP-dependent, and (c) occupation of the cG-BPDE hydrolytic site with competitive inhibitors did not produce the cGMP-dependent effect. cGMP-dependent phosphorylation of cG-BPDE by both cGK and cAK occurred at serine. Proteolytic digestion of cG-BPDE phosphorylated by either cGK or cAK revealed the same phosphopeptide pattern, suggesting that phosphorylation by the two kinases occurred at the same or adjacent site(s). Tryptic digestion of cG-BPDE phosphorylated by cGK and [gamma-32P]ATP produced a single major phosphopeptide of approximately 2 kDa with the following amino-terminal sequence: Lys-Ile-Ser-Ala-Ser-Glu-Phe-Asp-Arg-Pro-Leu-Arg- Radioactivity was released during the third cycle of Edman degradation. cG-BPDE is one of few specific in vitro cGK substrates of known function to be identified. Elevation of intracellular cGMP may cause phosphorylation of cG-BPDE by modulating the substrate site availability as well as by activating cGK. Such regulation would greatly increase the selectivity of the phosphorylation of cG-BPDE and would represent a unique mechanism of action of a cyclic nucleotide or other second messenger.  相似文献   

16.
Affinities of the catalytic subunit (C1) of Saccharomyces cerevisiae cAMP-dependent protein kinase and of mammalian cGMP-dependent protein kinase were determined for the protein kinase inhibitor (PKI) peptide PKI(6-22)amide and seven analogues. These analogues contained structural alterations in the N-terminal alpha-helix, the C-terminal pseudosubstrate portion, or the central connecting region of the PKI peptide. In all cases, the PKI peptides were appreciably less active as inhibitors of yeast C1 than of mammalian C alpha subunit. Ki values ranged from 5- to 290-fold higher for the yeast enzyme than for its mammalian counterpart. Consistent with these results, yeast C1 exhibited a higher Km for the peptide substrate Kemptide. All of the PKI peptides were even less active against the mammalian cGMP-dependent protein kinase than toward yeast cAMP-dependent protein kinase, and Kemptide was a poorer substrate for the former enzyme. Alignment of amino acid sequences of these homologous protein kinases around residues in the active site of mammalian C alpha subunit known to interact with determinants in the PKI peptide [Knighton, D. R., Zheng, J., Ten Eyck, L. F., Xuong, N-h, Taylor, S. S., & Sowadski, J. M. (1991) Science 253, 414-420] provides a structural basis for the inherently lower affinities of yeast C1 and cGMP-dependent protein kinase for binding peptide inhibitors and substrates. Both yeast cAMP-dependent and mammalian cGMP-dependent protein kinases are missing two of the three acidic residues that interact with arginine-18 in the pseudosubstrate portion of PKI. Further, the cGMP-dependent protein kinase appears to completely lack the hydrophobic/aromatic pocket that recognizes the important phenylalanine-10 residue in the N-terminus of the PKI peptide, and binding of the inhibitor by the yeast protein kinase at this site appears to be partially compromised.  相似文献   

17.
Homogeneous cGMP-dependent protein kinase catalyzes the rapid incorporation of phosphate, specifically into the inhibitory subunit of purified cardiac troponin with a maximal incorporation of 1 mol of phosphate/mol of troponin. When troponin was incubated in the presence of both cGMP- and cAMP-dependent protein kinases, a maximal incorporation of 1 mol of phosphate/mol of troponin was observed which suggested phosphorylation of the same site by the two kinases. Both cyclic nucleotide-dependent kinases had similar Km values for troponin, but the Vmax value for the phosphorylation reaction catalyzed by cAMP-dependent protein kinase was 12-fold greater than the value obtained for cGMP-dependent protein kinase.  相似文献   

18.
It is known from the experimental data that at different cerebellar neurons there are voltage-dependent Ca2+ channels, NMDA receptors, metabotropic glutamate and GABAB receptors. This receptor arrangement ensures that activation of excitatory and inhibitory input results in changes in activity of protein kinases and phosphatases and subsequent modification of synaptic efficacy. The mechanism of synaptic plasticity is advanced that in accordance with the known experimental data concerning the modification of excitatory and inhibitory inputs to Purkinje cells, granule cells, and deep cerebellar nuclei cells. The mechanism is based on a postulate that phosphorylation/dephosphorylation of AMPA (GABAA) receptors on cerebellar cells causes the LTP/LTD of excitatory (LTD/LTP of inhibitory) transmission. It is assumed that modification rules for Purkinje cells, granule cells, and deep cerebellar nuclei cells, wherein cGMP-dependent protein kinase G is involved in synaptic plasticity, are distinct from those of hippocampal/neocortical cells, wherein cAMP-dependent protein kinase A is involved in synaptic plasticity, since cGMP (cAMP) concentration decreases (increases) with Ca2+ rise.  相似文献   

19.
Incubation of purified cyclic guanosine 3':5'-monophospate-dependent protein kinase with [gamma-32P]ATP and Mg2+ led to formation of one 32P-labeled protein, Mr = 75,000, which corresponded to the single protein band detected after polyacrylamide gel electrophoresis in sodium dodecyl sulfate. When electrophoresis was performed without detergent, the labeled protein coincided with the position of cGMP-dependent protein kinase activity. Phosphorylation was enhanced severalfold by either histone or cAMP and was inhibited by the addition of cGMP. Low concentrations of cGMP blocked the stimulatory effects of cAMP or histone (or both). Since neither cAMP-dependent protein kinase nor cGMP-dependent phosphoprotein phosphatase activities were detected in the purified enzyme, we concluded that the cGMP-dependent protein kinase is a substrate for its own phosphotransferase activity and that other protein substrates (histone) and cyclic nucleotides modulate the process of self-phosphorylation.  相似文献   

20.
Inhibition of casein kinase II by heparin   总被引:24,自引:0,他引:24  
Casein kinase II, a cyclic nucleotide-independent protein kinase from rabbit reticulocytes, was shown to be inhibited by heparin. Heparin specifically inhibited the enzyme and had no effect on other protein kinases, including casein kinase I, the type I and II cAMP-dependent protein kinases, protease-activated kinase I, and the hemin-controlled repressor. Heparan sulfate was found to be 40-fold less effective than heparin towards casein kinase II; other acid mucopolysaccharides had little or no effect on the enzymatic activity. Steady state studies revealed that heparin acted as a competitive inhibitor with respect to the substrate, casein. A value of 20 ng/ml or about 1.4 nM was obtained for the apparent Ki. The inhibition was not reversed by ATP and varying the ATP and heparin concentrations in the assay only altered the maximum velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号