首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas sp. HK-6 is able to utilize RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) as its sole nitrogen source. The role of the xenB gene, encoding xenobiotic reductase B, was investigated using HK-6 xenB knockout mutants. The xenB mutant degraded RDX to a level that was 10-fold less than that obtained with the wild-type HK-6 strain. After 60 days of culture with 25 or 50 μM RDX, no residual RDX was detected in the supernatants of the wild-type aerobically grown cultures, whereas approximately 90 % of the RDX remained in the xenB mutant cultures. The xenB mutant bacteria exhibited a 102–104-fold decrease in survival rate compared to the wild-type. The expression of DnaK and GroEL proteins, two typical stress shock proteins (SSPs), in the xenB mutant increased after immediate exposure to RDX, yet dramatically decreased after 4 h of exposure. In addition, DnaK and GroEL were more highly expressed in the cultures with 25 μM RDX in the medium but showed low expression in the cultures with 50 or 75 μM RDX. The expression levels of the dnaK and groEL genes measured by RT-qPCR were also much lower in the xenB genetic background. Analyses of the proteomes of the HK-6 and xenB mutant cells grown under conditions of RDX stress showed increased induction of several proteins, such as Alg8, alginate biosynthesis sensor histidine kinase, and OprH in the xenB mutants when compared to wild-type. However, many proteins, including two SSPs (DnaK and GroEL) and proteins involved in metabolism, exhibited lower expression levels in the xenB mutant than in the wild-type HK-6 strain. The xenB knockout mutation leads to reduced RDX degradation ability, which renders the mutant more sensitive to RDX stress and results in a lower survival rate and an altered proteomic profile under RDX stress.  相似文献   

2.
Pseudomonas sp. HK-6 is able to utilize hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as a sole nitrogen source. The HK-6 strain was stimulated to produce an exopolymer, mainly alginate, as a stress response when grown in LB broth containing RDX, synthesizing ~230 μg/mL after 48 h. The algA mRNA levels in HK-6 increased by 7–8-fold after 2–6 h of exposure to 0.1 mM RDX, as measured by RT-qPCR. HK-6 was able to degrade ~25 % of 0.1 mM RDX after 20 days and 60 % after 50 days, whereas the pnrB null mutant only degraded less than 1 % after 50 days. The introduction of an algD promoter–pnrB gene fusion into the pnrB mutant fully restored RDX-degradation capability. To facilitate a study of PnrB action on RDX, a His6-PnrB fusion protein was heterologously expressed in E. coli BL21 cells, and the enzymatic activity on RDX was assayed by measuring the decrease in absorbance at 340 nm due to NADH oxidation. At the fixed condition of 0.1 mM RDX, 0.2 mM NADH, and 1 μg His6-PnrB, the absorbance at 340 nM gradually decreased and reached to its minimum value after 30 min. However, calculating the V max and K m values of PnrB for RDX was challenging due to extremely low solubility of RDX in water. The results clearly indicate the potential use of the algD promoter in studies of some genes in Pseudomonas species.  相似文献   

3.
The cellular responses of Pseudomonas sp. HK-6 to explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) have been extensively analyzed in this study. The stress shock proteins, which might contribute to enhancing the cellular resistance to the cytotoxic effect of RDX, were induced at different concentrations of RDX used as a substrate for cell culture of Pseudomonas sp. HK-6. The proteins were identified as 70-kDa DnaK and 60-kDa GroEL by SDS-PAGE and Western blot using the anti-DnaK and anti-GroEL monoclonal antibodies. The stress shock proteins induced by RDX were found to increase in proportion to the RDX concentration used for this work. Analysis of membrane fatty acids of strain HK-6 following exposure to RDX showed that the amounts of dominant lipids 16:1 7c/15:0 iso 2OH, 16:0 and 18:1 7c/9t/12t decreased substantially or were not detected in the cells exposed to RDX, while amounts of lipids 10:0 iso, 14:1 5c/5t and 16:10 methyl increased dramatically. Scanning electron microcopy analyses revealed the presence of perforations and irregular rod shapes with wrinkled surfaces for cells treated with 0.135 mM RDX for 12 h, suggesting that RDX has a substantial cytotoxic impact on cells of strain HK-6.  相似文献   

4.
Heat treatment of wild-type Escherichia coli cells led to a transient relaxation of negatively supercoiled plasmid DNA and there was no recovery of DNA torsional strain in the DNA in gyrA mutant cells. After heat treatment, DnaK and GroEL proteins were synthesized continuously in the gyrA mutant cells, whereas they were synthesized only transiently in wild-type cells. Thus, change in superhelical density of the DNA correlated with the temperature-induced expression of heat shock proteins. Inhibitors of DNA gyrase (nalidixic acid, novobiocin), an organic solvent (ethanol) and a psychotropic drug (chlorpromazine) all stimulated relaxation of cellular DNA over the same concentration range that induces heat shock proteins. As DNA relaxation was induced by heat treatment or chemicals in an rpoH mutant, the process is not the result of induced synthesis of heat shock proteins.  相似文献   

5.
6.
Scanning electron microscopy revealed pores and wrinkles on the surface of Pseudomonas sp. HK-6 cells grown in Luria Bertani (LB) medium containing 0.5 mM TNT (2,4,6-trinitrotoluene). Exopolymer connections were also observed on the wild-type HK-6 cells but not on the algA mutant cells. In addition, the amount of exopolymer from HK strain increased from 90 to 210 microg/mL under TNT stress, whereas the algA mutant produced approximately 30 microg/mL, and its exopolymer production was little increased by TNT stress. These results indicate that TNT stress induced exopolymer production with alginate as a major component. The algA mutant degraded TNT more slowly than the wild-type HK-6 strain. HK-6 was able to completely degrade 0.5 mM TNT within 8 days, whereas algA mutant only achieved approximately 40% within the same time period. Even after 20 days, no more than 80% of TNT was degraded. According to analyses of proteomes of HK-6 and algA mutant cells grown under TNT stress or no stress, several proteins (KinB, AlgB, Alg8, and AlgL) in alginate biosynthesis were only highly induced by both strains under TNT stress. Interestingly, two stress-shock proteins (SSPs), GroEL and RpoH, were more highly expressed in the algA mutant than the HK-6 strain. The algA mutant was rendered more vulnerable to environmental stress and had reduced ability to metabolize TNT in the absence of alginate synthesis.  相似文献   

7.
The ability of ruminal microbes to degrade the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in ovine whole rumen fluid (WRF) and as 24 bacterial isolates was examined under anaerobic conditions. Compound degradation was monitored by high-performance liquid chromatography analysis, followed by liquid chromatography–tandem mass spectrometry identification of metabolites. Organisms in WRF microcosms degraded 180 μM RDX within 4 h. Nitroso-intermediates hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) were present as early as 0.25 h and were detected throughout the 24-h incubation period, representing one reductive pathway of ring cleavage. Following reduction to MNX, peaks consistent with m/z 193 and 174 were also produced, which were unstable and resulted in rapid ring cleavage to a common metabolite consistent with an m/z of 149. These represent two additional reductive pathways for RDX degradation in ovine WRF, which have not been previously reported. The 24 ruminal isolates degraded RDX with varying efficiencies (0–96 %) over 120 h. Of the most efficient degraders identified, Clostridium polysaccharolyticum and Desulfovibrio desulfuricans subsp. desulfuricans degraded RDX when medium was supplemented with both nitrogen and carbon, while Anaerovibrio lipolyticus, Prevotella ruminicola, and Streptococcus bovis IFO utilized RDX as a sole source of nitrogen. This study showed that organisms in whole rumen fluid, as well as several ruminal isolates, have the ability to degrade RDX in vitro and, for the first time, delineated the metabolic pathway for its biodegradation.  相似文献   

8.
A sequential anaerobic–aerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) was studied. The results demonstrated that: (i) a complete degradation of RDX was achieved within 20 days using a consortium of bacteria from a wastewater activated sludge, (ii) RDX degradation did not occur under aerobic conditions alone, (iii) RDX-degrading bacterial strain that was isolated from the activated sludge completely degraded RDX within 2 days, and (iv) RDX- induced protein expressions were observed in the RDX-degrading bacterial strain. Based on fatty acid composition and a confirmation with a 16S rRNA analysis, the RDX-degrading bacterial strain was identified as a Bacillus pumilus—GC subgroup B.  相似文献   

9.
To better understand abscisic acid (ABA) regulation of the synthesis of chloroplast proteins in maize (Zea mays L.) in response to drought and light, we compared leaf proteome differences between maize ABA-deficient mutant vp5 and corresponding wild-type Vp5 green and etiolated seedlings exposed to drought stress. Proteins extracted from the leaves of Vp5 and vp5 seedlings were used for two-dimensional electrophoresis (2-DE) and subsequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). After Coomassie brilliant blue staining, approximately 450 protein spots were reproducibly detected on 2-DE gels. A total of 36 differentially expressed protein spots in response to drought and light were identified using MALDI-TOF MS and their subcellular localization was determined based on the annotation of reviewed accession in UniProt Knowledgebase and the software prediction. As a result, corresponding 13 proteins of the 24 differentially expressed protein spots were definitely localized in chloroplasts and their expression was in an ABA-dependent way, including 6 up-regulated by both drought and light, 5 up-regulated by drought but down-regulated by light, 5 up-regulated by light but down-regulated by drought; 5 proteins down-regulated by drought were mainly those involved in photosynthesis and ATP synthesis. Thus, the results in the present study supported the vital role of ABA in regulating the synthesis of drought- and/or light-induced proteins in maize chloroplasts and would facilitate the functional characterization of ABA-induced chloroplast proteins in C4 plants.  相似文献   

10.
Repeated use of the explosive compound hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) on military land has resulted in significant soil and groundwater pollution. Rates of degradation of RDX in the environment are low, and accumulated RDX, which the U.S. Environmental Protection Agency has determined is a possible human carcinogen, is now threatening drinking water supplies. RDX-degrading microorganisms have been isolated from RDX-contaminated land; however, despite the presence of these species in contaminated soils, RDX pollution persists. To further understand this problem, we studied RDX-degrading species belonging to four different genera (Rhodococcus, Microbacterium, Gordonia, and Williamsia) isolated from geographically distinct locations and established that the xplA and xplB (xplAB) genes, which encode a cytochrome P450 and a flavodoxin redox partner, respectively, are nearly identical in all these species. Together, the xplAB system catalyzes the reductive denitration of RDX and subsequent ring cleavage under aerobic and anaerobic conditions. In addition to xplAB, the Rhodococcus species studied here share a 14-kb region flanking xplAB; thus, it appears likely that the RDX-metabolizing ability was transferred as a genomic island within a transposable element. The conservation and transfer of xplAB-flanking genes suggest a role in RDX metabolism. We therefore independently knocked out genes within this cluster in the RDX-degrading species Rhodococcus rhodochrous 11Y. Analysis of the resulting mutants revealed that XplA is essential for RDX degradation and that XplB is not the sole contributor of reducing equivalents to XplA. While XplA expression is induced under nitrogen-limiting conditions and further enhanced by the presence of RDX, MarR is not regulated by RDX.  相似文献   

11.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xplA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization.  相似文献   

12.
Aim: The goal of this study was to compare the degradation of hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) by three Rhodococcus strains under anaerobic, microaerophilic (<0·04 mg l?1 dissolved oxygen) and aerobic (dissolved oxygen (DO) maintained at 8 mg l?1) conditions. Methods and Results: Three Rhodococcus strains were incubated with no, low and ambient concentrations of oxygen in minimal media with succinate as the carbon source and RDX as the sole nitrogen source. RDX and RDX metabolite concentrations were measured over time. Under microaerophilic conditions, the bacteria degraded RDX, albeit about 60‐fold slower than under fully aerobic conditions. Only the breakdown product, 4‐nitro‐2,4‐diazabutanal (NDAB) accumulated to measurable concentrations under microaerophilic conditions. RDX degraded quickly under both aerated and static aerobic conditions (DO allowed to drop below 1 mg l?1) with the accumulation of both NDAB and methylenedinitramine (MEDINA). No RDX degradation was observed under strict anaerobic conditions. Conclusions: The Rhodococcus strains did not degrade RDX under strict anaerobic conditions, while slow degradation was observed under microaerophilic conditions. The RDX metabolite NDAB was detected under both microaerophilic and aerobic conditions, while MEDINA was detected only under aerobic conditions. Impact and Significance of the Study: This work confirmed the production of MEDINA under aerobic conditions, which has not been previously associated with aerobic RDX degradation by these organisms. More importantly, it demonstrated that aerobic rhodococci are able to degrade RDX under a broader range of oxygen concentrations than previously reported.  相似文献   

13.
TNT-induced cellular responses and proteomes in Pseudomonas sp. HK-6 were comparatively analyzed in two different media: basal salts (BS) and Luria broth (LB). HK-6 cells could not degrade more than 0.5 mM TNT with BS medium, while in LB medium, they exhibited the enhanced capability to degrade as much as 3.0 mM TNT. Analysis of total cellular fatty acids in HK-6 cells suggested that the relative abundance of several saturated or unsaturated fatty acids is altered under TNT-mediated stress conditions. Scanning electron microscopy showed the presence of perforations, irregular rod formations, and wrinkled extracellular surfaces in cells under TNT stress. Proteomic analysis of soluble protein fractions from HK-6 cultures grown with TNT as a substrate revealed 11 protein spots induced by TNT. Among these, seven proteins (including Alg8, AlgB, NirB, and the AhpC/Tsa family) were detected only in LB medium containing TNT. The proteins AspS, Tsf, and assimilatory nitrate reductase were increasingly expressed only in BS medium containing TNT. The protein dGTPase was found to be induced and expressed when cells were grown in either type of TNT-containing media. These results provide a better understanding of the cytotoxicity and survival mechanism used by Pseudomonas sp. HK-6 when placed under TNT stress conditions.  相似文献   

14.
《Gene》1997,189(2):203-207
The Vibrio cholerae rpoH gene coding for the heat-shock sigma factor, σ32, has been cloned and shown to functionally complement Escherichia coli rpoH mutants. The nt sequence of the gene has been determined and the deduced aa sequence is more than 80% homologous to the E. coli rpoH gene product. Downstream of the V. cholerae rpoH gene, an unidentified dehydrogenase gene (udhA) is present on the opposite strand facing rpoH. The predicted secondary structure of the 5′-proximal region of V. cholerae rpoH mRNA is apparently different from the conserved secondary structures of the rpoH mRNA reported for several bacterial species. The `RpoH box', a stretch of 9 aa (QRKLFFNLR) unique to σ32 factors, and the `downstream box' sequence complementary to a part of the 16S rRNA, have been detected.  相似文献   

15.
BackgroundTlyA proteins are expressed in a variety of pathogenic bacteria and possess dual hemolytic and ribosomal RNA methyltransferase functions. While the mechanism of TlyA mediated rRNA methylation is well understood, relatively little is known about the mechanism of TlyA induced hemolysis.MethodsTlyA protein from the pig pathogen Brachyspira hampsonii was heterologously expressed and purified from an E. coli host. Hemolytic activity and rRNA methylation were assessed in vitro. Site-directed mutagenesis was used to mutate amino acids believed to be involved in TlyA mediated hemolysis.ResultsPurified TlyA-His protein exhibited both hemolytic and rRNA methyltransferase activities in vitro, with partial inhibition of hemolysis observed under reducing conditions. Mutation of cysteine 80 to alanine impaired hemolytic activity. A C27A/C93A mutant was capable of dimerizing under non-reducing conditions, indicating that a C80-C80 disulfide bond is involved in TlyA oligomerization. A mutation conserved in several avirulent Brachyspira species (S9K) completely abolished hemolytic activity of TlyA. This loss of activity was attributed to impaired oligomerization in the S9K mutant, as assessed by ITC and size-exclusion chromatography experiments.ConclusionsOligomeric assembly and hemolytic activity of TlyA from Brachyspira hampsonii is dependent on the formation of an intermolecular C80-C80 disulfide bond and noncovalent interactions involving serine 9. The conservation of these amino acids in TlyA proteins from pathogenic bacteria suggests a correlation between tlyA gene mutations and bacterial virulence.General significanceOur results further elucidate the mechanisms underlying TlyA mediated hemolysis and provide evidence of a conserved mechanism of oligomerization for TlyA family proteins.  相似文献   

16.
Chlamydomonas has two actin genes, one coding for a conventional actin and the other coding for a highly divergent actin. The divergent actin NAP (for “novel actin-like protein”) is expressed only negligibly in wild-type cells but abundantly in a null mutant of conventional actin, the ida5 mutant. The presence of the dormant NAP gene suggests that NAP may also have its own function in wild-type cells under some conditions. However, no specific functions have been suggested. In this study, we examined the expression of actin and NAP in wild-type and ida5 cells under conditions where actin function has been shown to be important. We found that deflagellation induces the expression of NAP as well as that of actin in wild-type cells. The expressed NAP becomes localized to the regrown flagella, apparently without being associated with dynein. Mating of gametes also increased the expression of actin in wild-type cells and that of NAP in ida5 cells, resulting in accumulation of these proteins in flagella (in both wild-type and ida5 cells) and the fertilization tubule (only in wild-type cells). However, it did not induce significant NAP expression in wild-type cells. These and other observations suggest that the expression of actin and NAP mRNAs is controlled by two discrete mechanisms and that NAP plays a role in flagellar formation in wild-type cells.  相似文献   

17.
18.
19.
A fermentative, non-spore forming, motile, rod-shaped bacterium, designated strain MJ1T, was isolated from an RDX contaminated aquifer at a live-fire training site in Northwest NJ, United States. On the basis of 16S rRNA gene sequencing and DNA base composition, strain MJ1T was assigned to the Firmicutes. The DNA G+C content was 42.8 mol%. Fermentative growth was supported by glucose and citrate in a defined basal medium. The bacterium is a strict anaerobe that grows between at pH 6.0 and pH 8.0 and 18 and 37 °C. The culture did not grow with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) as the electron acceptor or mineralize RDX under these conditions. However, MJ1T transformed RDX into MNX, methylenedinitramine, formaldehyde, formate, ammonium, nitrous oxide, and nitrate. The nearest phylogenetic relative with a validly published name was Desulfotomaculum guttoideum (95 % similarity). However, MJ1T was also related to Clostridium celerecrescens DSM 5628 (95 %), Clostridium indolis DSM 755 (94 %), and Clostridium sphenoides DSM 632 (94 %). DNA:DNA hybridization with these strains was between 6.7 and 58.7 percent. The dominant cellular fatty acids (greater than 5 % of the total, which was 99.0 % recovery) were 16:0 fatty acid methyl ester (FAME) (32.12 %), 18:1cis 11 dimethyl acetal (DMA) (16.47 %), 16:1cis 9 DMA (10.28 %), 16:1cis 9 FAME (8.10 %), and 18:1cis 9 DMA (5.36 %). On the basis of morphological, physiological, and phylogenetic data, Clostridium geopurificans is proposed as a new species in genus Clostridium, with strain MJ1T as the type strain.  相似文献   

20.
In previous work, we studied the anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a methanogenic mixed culture that biodegrades RDX by using H2 as the sole electron donor. Strain HAAP-1 was isolated after enriching for the homoacetogens in a mineral medium containing RDX and an H2-CO2 (80:20) headspace. Strain HAAP-1 degraded 29.0 M RDX in <14 days and formed 13.0 mM acetate when grown in a mineral medium with an H2-CO2 headspace. Methylenedinitramine was observed as a transient intermediate, indicating ring cleavage had occurred. In live cultures containing an N2-CO2 headspace, RDX was not degraded, and no acetate was formed. The 16S rRNA gene sequence for strain HAAP-1, consisting of 1485 base pairs, had a 99.2% and 99.1% sequence similarity to Acetobacterium malicum and A. wieringae, respectively. This is the first report of RDX degradation by a homoacetogen growing autotrophically and extends the number of genera known to carry out this transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号