首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Somatic hybrid plants regenerated following the fusion of leaf mesophyll protoplasts of Petunia parodii with those isolated from a cell suspension of albino P. inflata. These two species exhibit a unilateral cross-incompatability with a pre-zygotic mode of reproductive isolation preventing hybridizations with P. inflata as the maternal parent. Selection of somatic hybrids relied on the fact that unfused or homokaryon protoplasts of P. parodii did not develop beyond the cell colony stage while those of the putative somatic hybrids and albino P. inflata parent produced callus. Green somatic hybrid calluses were readily identified against the white background of P. inflata following complementation to chlorophyll synthesis proficiency and continued growth in hybrid cells. Shoots, and ultimately flowering plants, were identified as somatic hybrids based on their floral morphology and colour, chromosome number and the fact that they segregated for parental characters. The frequency of somatic hybrid production was comparable to that previously established for two sexually compatible Petunia species.  相似文献   

2.
Summary Restriction endonuclease cleavage pattern analysis of chloroplast DNA (cpDNA) of three different interspecific somatic hybrid plants revealed that the cytoplasms of the hybrids contained only cpDNA of P. parodii. The somatic hybrid plants analysed were those between P. parodii (wild type) + P. hybrida (wild type); P. parodii (wild type)+P. inflata (cytoplasmic albino mutant); P. parodii (wild type) + P. parviflora (nuclear albino mutant). The presence of only P. parodii chloroplasts in the somatic hybrid of P. parodii + P. inflata is possibly due to the stringent selection used for somatic hybrid production. However, in the case of the two other somatic hybrids P. parodii + P. hybrida and P. parodii + P. parviflora it was not possible to determine whether the presence of only P. parodii chloroplasts in these somatic hybrid plants was due to the nature of the selection schemes used or simply occurred by chance. The relevance of such somatic hybrid material for the study of genomic-cytoplasmic interaction is discussed, as well as the use of restriction endonuclease fragment patterns for the analysis of taxonomic and evolutionary inter-relationships in the genus Petunia.  相似文献   

3.
Summary Somatic hybrid plants were regenerated following calcium-high pH fusion of the unidirectional, sexually incompatible cross of Petunia parodii wild-type leaf mesophyll protoplasts with protoplasts from a cytoplasmic determined chlorophyll-deficient mutant of P. inflata. Genic complementation to chlorophyll synthesis and sustained growth in the selective medium was used to visually identify hybrid calluses. Hybrid calluses were subsequently regenerated to shoots, rooted, and confirmed as somatic hybrids by their intermediate floral and leaf morphology based on comparison to the 2 n = 4 x = 28 sexual counterpart, dominant anthocyanin expression in the corolla, chromosome number, and peroxidase and maleic dehydrogenase isozyme patterns. Certain cytologically stable somatic hybrids displayed aberrant reproductive and floral morphologies including subtle to moderate corolla and leaf pigment variegation, floral dimension changes and reduced pollen viability. In contrast, cytologically unstable somatic hybrids showed various degrees of aneuploidy coupled with corolla splitting, and irregularities in reproductive organs such as double stigmas and styles in addition to reduced pollen viability. Postulated mechanisms to account for these phenotypic changes in stable and unstable somatic hybrids include nuclear-cytoplasmic genomic incompatibility, chromosome loss in a biparental cytoplasm, or a phenomenon similar to hybrid dysgenesis occurring as a result of somatic fusion.Michigan Agricultural Experiment Station Journal Article No. 11376. Supported by Grant No. I-134-79 from BARD — The United States — Israel Binational Agricultural Research and Development Fund, and by grant 11-77-4 from American Florists Endowment  相似文献   

4.
The analysis of the subunit polypeptide composition of Fraction 1 protein provides information on the expression of both chloroplast and nuclear genomes. Fraction 1 protein, isolated from leaves of the somatic hybrid plants derived from the fusion of protoplasts of Petunia parodii and P. parviflora, was analyzed for its subunit polypeptide composition by isoelectric focusing in 8 M urea. The fraction 1 protein enzyme oligomer in the somatic hybrid plants contained small subunits resulting from the expression of both parental nuclear genomes, but probably only one of the parental large subunits, namely that of P. parodii. The relevance of such somatic hybrid material for the study of nucleocytoplasmic interrelationships is discussed, as well as the use of these fraction 1 protein isoelectric focusing patterns for the analysis of taxonomic relationships in Petunia.  相似文献   

5.
Summary The chloroplast (cp) and mitochondrial (mt) DNAs of Petunia somatic hybrid plants, which were derived from the fusion of wild-type P. parodii protoplasts with albino P. inflata protoplasts, were analyzed by endonuclease restriction and Southern blot hybridization. Using 32P-labelled probes that distinguished the two parental cpDNAs at a BamH1 site and at a HpaII site, only the P. parodii chloroplast genome was detected in the 10 somatic hybrid plants analyzed. To examine whether cytoplasmic mixing had resulted in rearrangement of the mitochondrial genome in the somatic hybrids, restriction patterns of purified somatic hybrid and parental mtDNAs were analyzed. Approximately 87% of those restriction fragments which distinguish the two parental genomes are P. inflata-specific. Restriction patterns of the somatic hybrid mtDNAs differ both from the parental patterns and from each other, suggesting that an interaction occurred between the parental mitochondrial genomes in the somatic fusion products which resulted in generation of the novel mtDNA patterns. Southern blot hybridization substantiates this conclusion. In addition, somatic hybrid lines derived from the same fusion product were observed to differ in mtDNA restriction pattern, reflecting a differential sorting-out of mitochondrial genomes at the time the plants were regenerated.  相似文献   

6.
Somatic hybrid plants were regenerated following electrofusion between leaf mesophyll protoplasts of P. hybrida (2n = 14) and a wild sexually incompatible species, P. variabilis (2n = 18). The selection of hybrids was based on the hybrid vigour, expressed both in the growth of the callus and at the shoot formation stage, resulting from the combination of parental genomes. Calli exhibiting vigorous growth were selected, and upon transfer to regeneration medium gave rise to shoots. Four regenerated plants from three calli had morphological characteristics intermediate between those of the parents. The hybrid nature of these plants was confirmed by chromosome counts as well as isozyme and DNA analyses. They had amphidiploid chromosome numbers (2n = 32) and were fertile. Following self-pollination and backcrossing with P. variabilis, large numbers of F2 and BC1 seedlings were obtained.  相似文献   

7.
Summary The ovaries of two different Petunia species: Petunia hybrida (hort) and Petunia parodii (Steere) were irradiated with -ray doses ranging from 50 to 1,000 Gy before pollination. Seed setting occurred after 4 days preculture on a non-sterile medium. Ovaries transformed into fruits were then cultivated aseptically with the following results: (1) -ray doses ranging from 200 to 1,000 Gy led to the development of two types of plants: haploids 2n=x=7 and overdiploids 2n>2x=14. (2) The androgenetic origin of haploids was ascertained by using genetic markers. The origin of overdiploids is discussed. (3) Androgenetic haploids contained the chloroplasts of the irradiated female parent. No visible change of cp DNA patterns was observed after irradiation. (4) The four possible androgenetic events were successfully obtained between the two Petunia species: hybrida haploids with hybrida or parodii cytoplasm, and parodii haploids with parodii or hybrida cytoplasm.  相似文献   

8.
Summary Symmetric somatic hybrid plants have been produced by electrofusion of leaf protoplasts of Medicago sativa and callus protoplasts of Medicago coerulea. The selection of hybrid individuals has been performed at the cellular level by recording the positions of single heterocaryons immobilized in a semisolid culture medium. The hybrid nature of the heterokaryons was assessed in fluorescent light on the basis of their color. Hybrid minicalli were picked up manually and grown first on propagating, and then on regenerating, media. Six putative hybrid calli were selected and two of them regenerated several plants. The hybrid nature of the regenerants was confirmed by cytological and isozyme analysis. Among the several morphological traits taken into account for the characterization of somatic hybrid plants, some were intermediate, some lower, and some higher, with respect to the parents. The somatic hybrid plants were fertile and set seed. The production of somatic hybrid plants in the genus Medicago is discussed in relation to the regenerating capability of parental protoplasts.This research was supported by the National Research Council of Italy, Special Project RAISA, Subproject N. 2 paper N. 347  相似文献   

9.
Summary Tall fescue (Festuca arundinacea Schreb.) protoplasts, inactivated by iodoacetamide, and non-morphogenic Italian ryegrass (Lolium multiflorum Lam.) protoplasts, both derived from suspension cultures, were electrofused and putative somatic hybrid plants were recovered. Two different genotypic fusion combinations were carried out and several green plants were regenerated in one of them. With respect to plant habitus, leaf and inflorescence morphology, the regenerants had phenotypes intermediate between those of the parents. Southern hybridization analysis using a rice ribosomal DNA probe revealed that the regenerants contained both tall fescue- and Italian ryegrass-specific-DNA fragments. A cloned Italian ryegrass-specific interspersed DNA probe hybridized to total genomic DNA from Italian ryegrass and from the green regenerated somatic hybrid plants but not to tall fescue. Chromosome counts and zymograms of leaf esterases suggested nuclear genome instability of the somatic hybrid plants analyzed. Four mitochondrial probes and one chloroplast DNA probe were used in Southern hybridization experiments to analyze the organellar composition of the somatic hybrids obtained. The somatic hybrid plants analyzed showed tall fescue, additive or novel mtDNA patterns when hybridized with different mitochondrial gene-specific probes, while corresponding analysis using a chloroplast gene-specific probe revealed in all cases the tall fescue hybridization profile. Independently regenerated F. arundinacea (+) L. multiflorum somatic hybrid plants were successfully transferred to soil and grown to maturity, representing the first flowering intergeneric somatic hybrids recovered in Gramineae.  相似文献   

10.
Summary Mesophyll protoplasts of tomato (Lycopersicon esculentum Mill. var. cerasiforme) and of an atrazine-resistant biotype of black nightshade, (Solanum nigrum L.), were fused by using polyethylene glycol/dimethyl sulfoxide (PEG/DMSO) solution and three somatic hybrid plants, each derived from a separate callus, were recovered. A twostep selection system was used: (1) protoplast culture medium (modified 8E) in which only tomato protoplasts formed calluses; and (2) regeneration medium (MS2Z) on which only S. nigrum calluses produced shoots. These selective steps were augmented by early isozyme analysis of putative hybrid shoots still in vitro. Phosphoglucoisomerase (PGI) and glutamate oxaloacetate transaminase (GOT) mapped to five loci on four chromosomes in tomato confirmed the hybrid nature of the nuclei of regenerated shoots. The somatic hybrid plants had simple leaves, and intermediate flower and bud morphology, but anthesis was reduced to 5% due to premature bud abscission and the pollen grains were non-viable. Southern DNA blot hybridization using a pea 45 S ribosomal RNA gene probe reconfirmed the hybrid nature of the nuclear genome of the three plants. A 32P-labeled probe of Oenothera chloroplast DNA (cpDNA) hybridized to cpDNA restricted with EcoRI or EcoRV indicated the presence of the tomato cpDNA pattern in all three hybrids. Likewise, the plants were all found to be atrazine sensitive. Analysis with two mitochondrial (mt)DNA-specific probes, maize cytochrome oxidase subunit II and PmtSylSa8 from Nicotiana sylvestris, showed that, in addition to typical mitochondrial rearrangements, specific bands of both parents were present or missing in each somatic hybrid plant.Michigan Agricultural Experiment Station Journal Article No. 12433  相似文献   

11.
Summary The goal in this experiment was to achieve direct plasmon transfer via cell fusion. Two lines were used — a normal fertile line of P. hybrida, and a cytoplasmic male sterile (cms) line with the nuclear background of P. parodii. Two plants phenotypically similar to the original male sterile line were developed from protoplasts, but instead of being cms they were male fertile. On the other hand, two plants typical of the original normal line developed from protoplasts, but they were cms instead of fertile. Chromosome counts were done and in all cases the expected diploid number (=14) was found. Genetic analysis showed that sorting out of cms and fertile segregants was evident in the first and second backcross of the cms cybrids. The fertile type cybrids were stable fertile for several generations of selfing and proper backcrossing. These results are discussed in the light of an earlier fusion experiment in which these two parental lines were involved.Contribution from the Department of Plant Genetics and Breeding, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 991-E, 1984 series  相似文献   

12.
Following PEG and high pH induced fusion, intraspecific gametosomatic hybrid plants (pollen tetrad protoplasts of a normal purple flowered variety of P. hybrida fused with cell suspension protoplasts of a nuclear albino mutant of the variety Blue Lace) and interspecific gametosomatic hybrid plants (tetrad protoplasts (as above) fused with cell suspension protoplasts of a nuclear albino mutant of P. parviflora) were recovered. Hybrid plants of both combinations possessed an intermediate vegetative and floral morphology with chromosome numbers of 2n=3x=21 and 2n=3x=25 respectively. Hybrid cells were in both systems identified as green colonies against an albino background as a result of complementation to chlorophyll proficiency. Pollen tetrad protoplasts did not divide. The production of such plants at the intra- and interspecific level in Petunia has shown that the concept of gametosomatic hybridisation can be extended to genera other than Nicotiana. An alternative selection strategy is available to that as used earlier for Nicotiana.  相似文献   

13.
Summary The fusion of gametic protoplasts with somatic protoplasts giving rise to gametosomatic hybrid plants was investigated. Gametosomatic hybrid plants were regenerated following the fusion of nitrate reductase deficient (Nr) Nicotiana tabacum Nia-130 leaf mesophyll protoplasts with N. glutinosa tetrad protoplasts. The resulting plants were confirmed as hybrids, based on leaf and floral morphology, chromosome number, leaf esterase and leaf callus peroxidase zymograms and Fraction-1-protein analysis. The five gametosomatic hybrid plants had the expected pentaploid, but functionally triploid chromosome number of 3n=5x=60. The relevance of triploid gametosomatic hybrids in facilitating limited gene transfer, is discussed. The utilisation of tetrads as a generally available source of haploid protoplasts for fusion studies is proposed.  相似文献   

14.
The relationship of five species of Petunia and ten cultivars of the cultivated petunia, Petunia x hybrida, were investigated using DNA-amplification fingerprinting (DAF). Reproducible banding profiles were obtained from P. parodii and P. axillaris DNA from different seed sources. In contrast, other petunias such as P. inflata, P. violacea and P. integrifolia produced variable fingerprints when different plants were examined. However, representative profiles of the variable Petunia taxa were obtained by bulking the leaf tissue from ten different individual plants. Each of ten octamer primers revealed polymorphic loci between taxa. Among a total of 201 bands produced, 146 (73%) loci were polymorphic and distinguished all species and cultivars. Phenetic and cluster analysis using DAF markers separated P. axillaris from P. parodii and distinguished between the violet-flowered species, P. inflata, P. violacea, and P. integrifolia. P. parodii grouped together with the monophyletic set of the ten cultivars of P. x hybrida examined, indicating that it had made a major contribution to the development of these cultivars. Cultivars were distributed within the dendograms by flower color. The results demonstrated the utility of DAF in establishing relationships among closely related species and cultivars of Petunia.  相似文献   

15.
Interspecific somatic hybrid plants were obtained by symmetrical electrofusion of mesophyll protoplasts of Medicago sativa with callus protoplasts of Medicago arborea. Somatic hybrid calli were picked manually from semi-solid culture medium after they were identified by their dual color in fluorescent light. Twelve putative hybrid calli were selected and one of them regenerated plants. The morphogenesis of the somatic hybrid calli was induced by the synthetic growth regulator 1,2 benzisoxazole-3-acetic acid. Somatic hybrid plants showed intensive genome rearrangements, as evidenced by isozyme and RFLP analysis. The morphology of somatic hybrid plants was in general intermediate between the parents. The production of hybrids by protoplast fusion between sexually incompatible Medicago species is related to the in vitro respon siveness of the parental protoplasts. The possibility of using somatic hybrid plants in alfalfa breeding is discussed.  相似文献   

16.
Summary An early identification of fusion products was based on the presumed vigorous growth of hybrid calluses after fusion between Solanum brevidens and S. tuberosum leaf protoplasts. The S. brevidens protoplasts were unable to form multicellular colonies under the applied culture conditions. Three size groups of calluses were separated and analyzed at two different early phases of culture period. Squash blot hybridization with a S. brevidens specific repetitive DNA probe showed that the group of the largest calluses consisted of putative somatic hybrids with a frequency of 80–100% in three independent experiments. Furthermore, approximately 80–95% of the middle sized calluses and 33–90% of the smallest ones were shown to be hybrid. The unexpectedly high percentage of fusion products, even in the case of the smallest calluses, may result from the suppression of the development of parental potato colonies in cultures with mixed cell population. Till this time 120 independent colonies selected as putative hybrids have been regenerated into plants. All of them exhibited hybrid phenotype, and their hybrid origin was proved by cytological and restriction fragment length polymorphism analyses.Abbreviations BA N6-benzyladenine - NAA -naphthaleneacetic acid - RFLP restriction fragment length polymorphism - UV ultraviolet  相似文献   

17.
Allotriploid somatic hybrids were obtained from fusions between protoplasts of diploid tomato and monohaploid potato. The selection of fusion products was carried out in two different ways: (1) The fusion of nitrate reductase-deficient tomato with potato gave rise only to hybrid calli if selection was performed on media lacking ammonium. Parental microcalli were rarely obtained and did not regenerate. (2) The fusion of cytoplasmic albino tomato with potato gave rise to albino and green hybrid calli and plants. Allotriploids were identified from the two somatic hybrid populations by counting chloroplast numbers in leaf guard cells and by flow cytometry of leaf tissue. Although some pollen fertility of allotriploids and pollen-tube growth of tomato, potato andLycopersicon pennellii into the allotriploid style were observed, no progeny could be obtained. The relevance of allotriploid somatic hybrids in facilitating limited gene transfer from potato to tomato is discussed.  相似文献   

18.
Summary Somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum have been produced by the electrofusion of mesophyll protoplasts in a movable multi-electrode fusion chamber. Using hair structure as a selection criteria, we identified a total of 19 somatic hybrids, which represented an overall average of 15.3% of the 124 regenerated plants obtained in the two fusion experiments. Several morphological traits were intermediate to those of the parents, including trichome density and structure, height, leaf form and inflorescence. Cytological analyses revealed that the chromosome numbers of the somatic hybrids approximated the expected tetraploid level (2n=4x=48). Fifteen hybrid plants were homogeneous and had relatively stable chromosome numbers (46–48), while four other hybrids had variable chromosome numbers (35–48) and exhibited greater morphological variation. The hybridity of these 19 somatic hybrid plants was confirmed by analyses of phosphoglucomutase (Pgm) and esterase zymograms.  相似文献   

19.
Summary The nuclei and cytoplasm ofN. gossei andN. tabacum are compatible to the extent that reciprocal, interspecific F1 hybrids can be produced by conventional breeding techniques. Conditions were established in which manyN. gossei isolated chloroplasts could be seen by phase and fluorescence microscopy to adhere to 40% of the population of protoplasts obtained from white tissue of variegatedN. tabacum plants and to remain attached after washing the protoplasts. Chloroplasts also could be seen to enter the interior of the protoplasts. After treating albino protoplasts withN. gossei chloroplasts, the protoplasts were subjected to further conditions whereby 65 calluses containing shoots developed. TwentyN. tabacum protoplasts not treated with foreign chloroplasts also produced calluses with shoots to serve as a control. All calluses developed chlorophyll irrespective of whether or not the albino protoplasts had been treated with isolatedN. gossei chloroplasts. The Fraction 1 protein ofN. tabacum has a different electrophoretic mobility from the protein ofN. gossei or anN. gossei xN. tabacum F1 hybrid. The Fraction 1 protein large subunit is coded by chloroplast DNA, whereas the small subunit is coded by nuclear DNA. Fraction 1 protein was isolated from the variegated shoots of the 65 calluses obtained after treating albino protoplasts with foreign chloroplasts. Immunoelectrophoresis demonstrated the protein from each callus to have a mobility identical toN. tabacum protein. Therefore, under circumstances highly favorable for the direct transfer ofN. gossei isolated chloroplasts (and possibly nuclei also) intoN. tabacum protoplasts, no evidence was obtained to suggest that genetic information contained in the isolated foreign organelles was being translated into the polypeptides of either the large or small subunits of Fraction 1 protein contained in newly differentiated leaves derived from the protoplasts. Supported by Research Grant PCM-75-07368 from the National Science Foundation.  相似文献   

20.
Summary Mesophyll protoplasts of tomato (Lycopersicon esculentum) and pepino (Solanum muricatum) were fused by using an electrofusion method and cultured in modified MS medium supplemented with naphthaleneacetic acid and kinetin, in which only pepino and somatic hybrid protoplasts could divide. Somatic hybrid plants showing intermediate characteristics in morphology were regenerated from the calli exhibiting vigorous growth in contrast with those of pepino. The hybrid nature of these plants was confirmed by cytological observation and biochemical analyses of phosphoglucomutase isozymes and the fraction-1-protein. The regenerated somatic hybrids grew to flowering stage and set fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号