首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Heme oxygenase-1 (HO-1) protects endothelial cells (EC) from undergoing apoptosis. This effect is mimicked by CO, generated via the catabolism of heme by HO-1. The antiapoptotic effect of CO in EC was abrogated when activation of the p38alpha and p38beta MAPKs was inhibited by the pyridinyl imidazole SB202190. Using small interfering RNA, p38beta was found to be cytoprotective in EC, whereas p38alpha was not. When overexpressed in EC, HO-1 targeted specifically the p38alpha but not the p38beta MAPK isoform for degradation by the 26S proteasome, an effect reversed by the 26S proteasome inhibitors MG-132 or lactacystin. Inhibition of p38alpha expression was also observed when HO-1 was induced physiologically by iron protoporphyrin IX (hemin). Inhibition of p38alpha no longer occurred when HO activity was inhibited by tin protoporphyrin IX, suggesting that p38alpha degradation was mediated by an end product of heme catabolism. Exogenous CO inhibited p38alpha expression in EC, suggesting that CO is the end product that mediates this effect. The antiapoptotic effect of HO-1 was impaired when p38alpha expression was restored ectopically or when its degradation by the 26S proteasome was inhibited by MG-132. Furthermore, the antiapoptotic effect of HO-1 was lost when p38beta expression was targeted by a specific p38beta small interfering RNA. In conclusion, the antiapoptotic effect of HO-1 in EC is dependent on the degradation of p38alpha by the 26S proteasome and on the expression of p38beta.  相似文献   

4.
IL-6/STAT3 pathway is involved in a variety of biological responses, including cell proliferation, differentiation, apoptosis, and inflammation. In our present study, we found that CO releasing molecules (CORMs) suppress IL-6-induced STAT3 phosphorylation, nuclear translocation and transactivity in endothelial cells (ECs). CO is a byproduct of heme degradation mediated by heme oxygenase (HO-1). However, CORMs can induce HO-1 expression and then inhibit STAT3 phosphorylation. CO has been found to increase a low level ROS and which may induce protein glutathionylation. We hypothesized that CORMs increases protein glutathionylation and inhibits STAT3 activation. We found that CORMs increase the intracellular GSSG level and induce the glutathionylation of multiple proteins including STAT3. GSSG can inhibit STAT3 phosphorylation and increase STAT3 glutathionylation whereas the antioxidant enzyme catalase can suppress the glutathionylation. Furthermore, catalase blocks the inhibition of STAT3 phosphorylation by CORMs treatment. The inhibition of glutathione synthesis by BSO was also found to attenuate STAT3 glutathionylation and its inhibition of STAT3 phosphorylation. We further found that HO-1 increases STAT3 glutathionylation and that HO-1 siRNA attenuates CORM-induced STAT3 glutathionylation. Hence, the inhibition of STAT3 activation is likely to occur via a CO-mediated increase in the GSSG level, which augments protein glutathionylation, and CO-induced HO-1 expression, which may enhance and maintain its effects in IL-6-treated ECs.  相似文献   

5.
6.
Asthma, a chronic inflammatory disease of the airways, involves the increased expression of inflammatory mediators, including granulocyte-monocyte colony-stimulating factor (GM-CSF). Heme oxygenase-1 (HO-1), a stress-response protein, confers protection against oxidative stress. We hypothesized that carbon monoxide (CO), a byproduct of HO-1-dependent heme catabolism, regulates GM-CSF synthesis in human airway smooth muscle cells (HASMC). IL-1beta treatment induced a time-dependent induction of GM-CSF in HASMC. Furthermore, IL-1beta stimulated the major MAPK pathways, including ERK1/ERK2, JNK, and p38 MAPK. Exposure of HASMC to CO at low concentration (250 ppm) markedly inhibited IL-1beta-induced GM-CSF synthesis (>90%) compared with air-treated controls. CO treatment inhibited IL-1beta-induced ERK1/2 activation but did not inhibit JNK and p38 MAPK. Furthermore, CO increased cGMP levels in HASMC. Inhibition of guanylate cyclase by IH-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-1 (ODQ) abolished the inhibitory effects of CO on GM-CSF synthesis and ERK1/2 activation. Collectively, these data demonstrate that the inhibitory effect of CO on GM-CSF synthesis depends on ERK1/2 MAPK and guanylate cyclase/cGMP-dependent pathways.  相似文献   

7.
p38 MAPK has been reported to regulate the inflammatory response in various cell types via extracellular stimuli. p38 MAPK activation also results in the induction of heme oxygenase (HO)-1, which exerts potent anti-inflammatory effects. Although studies have shown that 17beta-estradiol (E(2)) prevented organ dysfunction following trauma-hemorrhage, it remains unknown whether p38 MAPK/HO-1 plays any role in E(2)-mediated attenuation of intestinal injury under those conditions. To study this, male rats underwent trauma-hemorrhage (mean blood pressure approximately 40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, E(2) (1 mg/kg body wt), the p38 MAPK inhibitor SB-203580 (2 mg/kg body wt) or E(2) plus SB-203580. Two hours thereafter, intestinal myeloperoxidase (MPO) activity and lactate, TNF-alpha, IL-6, ICAM-1, cytokine-induced neutrophil chemoattractant (CINC)-1, and macrophage inflammatory protein (MIP)-2 levels were measured. Intestinal p38 MAPK and HO-1 protein levels were also determined. Trauma-hemorrhage led to an increase in intestinal MPO activity and lactate, TNF-alpha, IL-6, ICAM-1, CINC-1, and MIP-2 levels. This was accompanied with a decrease in intestinal p38 MAPK activity and increase in HO-1 expression. Administration of E(2) normalized all the above parameters except HO-1, which was further increased following trauma-hemorrhage. Administration of SB-203580 with E(2) abolished the E(2)-mediated restoration of the above parameters as well as the increase in intestinal HO-1 expression following trauma-hemorrhage. These results suggest that the p38 MAPK/HO-1 pathway plays a critical role in mediating the salutary effects of E(2) on shock-induced intestinal injury.  相似文献   

8.
9.
Mitogen-activated protein (MAP) kinases have been suggested as potential mediators for interleukin 1beta (IL-1beta)-induced gene activation. This study investigated the role of the MAP kinases p38 and ERK2 in IL-1beta-mediated expression of the chemokine MCP-1 by human mesangial cells. Phosphorylation of p38 kinase, which is necessary for activation, increased significantly after IL-1beta treatment. p38 kinase immunoprecipitated from IL-1beta-treated cells phosphorylated target substrates to a greater extent than p38 kinase from controls. SB 203580, a selective p38 kinase inhibitor, was used to examine the role of p38 kinase in MCP-1 expression. SB 203580 decreased IL-1beta-induced MCP-1 mRNA and protein levels, but did not affect MCP-1 mRNA stability. Because NF-kappaB is necessary for MCP-1 gene expression, the effect of p38 kinase inhibition on IL-1beta induction of NF-kappaB was measured. SB 203580 (up to 25 microM) had no effect on IL-1beta-induced NF-kappaB nuclear translocation or DNA binding activity. Our previous work showed that IL-1beta also activates the MAP kinase ERK2 in human mesangial cells. PD 098059, a selective inhibitor of the ERK activating kinase MEK1, had no effect on IL-1beta-induced MCP-1 mRNA or protein levels, or on IL-1beta activation of NF-kappaB. These data indicate that p38 kinase is necessary for the induction of MCP-1 expression by IL-1beta, but is not involved at the level of cytoplasmic activation of NF-kappaB. In contrast, ERK2 does not mediate IL-1beta induced MCP-1 gene expression.  相似文献   

10.
11.
Endothelial cells are the primary targets of circulating immune and inflammatory mediators. We hypothesize that interleukin-18, a proinflammatory cytokine, induces endothelial cell apoptosis. Human cardiac microvascular endothelial cells (HCMEC) were treated with interleukin (IL) 18. mRNA expression was analyzed by ribonuclease protection assay, protein levels by immunoblotting, and cell death by enzyme-linked immunosorbent assay and fluorescence-activated cell sorter analysis. We also investigated the signal transduction pathways involved in IL-18-mediated cell death. Treatment of HCMEC with IL-18 increases 1) NF-kappaB DNA binding activity; 2) induces kappaB-driven luciferase activity; 3) induces IL-1beta and TNF-alpha expression via NF-kappaB activation; 4) inhibits antiapoptotic Bcl-2 and Bcl-X(L); 5) up-regulates proapoptotic Fas, Fas-L, and Bcl-X(S) expression; 6) induces fas and Fas-L promoter activities via NF-kappaB activation; 7) activates caspases-8, -3, -9, and BID; 8) induces cytochrome c release into the cytoplasm; 9) inhibits FLIP; and 10) induces HCME cell death by apoptosis as seen by increased annexin V staining and increased levels of mono- and oligonucleosomal fragmented DNA. Whereas overexpression of Bcl-2 significantly attenuated IL-18-induced endothelial cell apoptosis, Bcl-2/Bcl-X(L) chimeric phosphorothioated 2'-MOE-modified antisense oligonucleotides potentiated the proapoptotic effects of IL-18. Furthermore, caspase-8, IKK-alpha, and NF-kappaB p65 knockdown or dominant negative IkappaB-alpha and dominant negative IkappaB-beta or kinase dead IKK-beta significantly attenuated IL-18-induced HCME cell death. Effects of IL-18 on cell death are direct and are not mediated by intermediaries such as IL-1beta, tumor necrosis factor-alpha, or interferon-gamma. Taken together, our results indicate that IL-18 activates both intrinsic and extrinsic proapoptotic signaling pathways, induces endothelial cell death, and thereby may play a role in myocardial inflammation and injury.  相似文献   

12.
13.
Protein glutathionylation is a protective mechanism that functions in response to mild oxidative stress. Carbon monoxide (CO) can increase the reactive oxygen species concentration from a low level via the inhibition of cytochrome c oxidase. We therefore hypothesized that CO would induce NF-κB-p65 glutathionylation and then show anti-inflammatory effects. In this study, we found that CO-releasing molecules suppress TNFα-induced monocyte adhesion to endothelial cells (ECs) and reduce ICAM-1 expression. Moreover, CO donors were further found to exert their inhibitory effects by blocking NF-κB-p65 nuclear translocation, but do so independent of IκBα degradation, in TNFα-treated ECs. In addition, p65 protein glutathionylation represents the response signal to CO donors and is reversed by the reducing agent dithiothreitol. Thiol modification of the cysteine residue in the p65 RHD region was required for the CO-modulated NF-κB activation. The suppression of p65 glutathionylation by a GSH synthesis inhibitor, BSO, and by catalase could also attenuate TNFα-induced p65 nuclear translocation and ICAM-1 expression. CO donors induce Nrf2 activation and Nrf2 siRNA suppresses CO-induced p65 glutathionylation and inhibition. Furthermore, we found that the CO donors induce heme oxygenase-1 (HO-1) expression, which increases p65 glutathionylation. In contrast, HO-1 siRNA attenuates CO donor- and hemin-induced p65 glutathionylation. Our results thus indicate that the glutathionylation of p65 is likely to be responsible for CO-mediated NF-κB inactivation and that the HO-1-dependent pathway may prolong the inhibitory effects of CO donors upon TNFα treatment of ECs.  相似文献   

14.
15.
Li G  Lubin FD  McGee DW 《Cellular immunology》2004,231(1-2):30-39
Intestinal epithelial cells (IECs) produce several potent cytokines in response to interleukin-1 (IL-1) and may play a role in the inflammatory response. Previously, we determined that treatment of the Caco-2 cells with a cross-linking anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced cytokine secretion and mRNA levels, suggesting that the alpha3beta1 integrin may play a role in the regulation of IEC cytokine responses to IL-1. In this report, treatment of the Caco-2 cells with the anti-alpha3 integrin antibody resulted in a suppression of IL-1 induced levels of NF-kappaB binding activity in nuclear extracts, as determined by EMSA, as well as phosphorylation and degradation of the inhibitor, I(kappa)B(alpha). The anti-integrin antibody treatment was also found to suppress I(kappa)B kinase (IKK) activity and IKK(beta) phosphorylation. Culture of the Caco-2 cells on purified laminin-5, the ligand for the alpha3beta1 integrin, also resulted in suppression of IL-1 induced phosphorylation of I(kappa)B(alpha) and IKK(beta). Together with our previous findings, these results suggest that alpha3beta1 integrin binding results in a suppression of the IL-1 signaling pathway leading to the activation of NF-(kappa)B and ultimately IEC cytokine responses. These studies define a novel regulatory mechanism which may be important in the control of IEC cytokine responses during inflammation.  相似文献   

16.
17.
Lee TS  Chau LY 《Nature medicine》2002,8(3):240-246
The mechanisms underlying the action of the potent anti-inflammatory interleukin-10 (IL-10) are poorly understood. Here we show that, in murine macrophages, IL-10 induces expression of heme oxygenase-1 (HO-1), a stress-inducible protein with potential anti-inflammatory effect, via a p38 mitogen-activated protein kinase-dependent pathway. Inhibition of HO-1 protein synthesis or activity significantly reversed the inhibitory effect of IL-10 on production of tumor necrosis factor-alpha induced by lipopolysaccharide (LPS). Additional experiments revealed the involvement of carbon monoxide, one of the products of HO-1-mediated heme degradation, in the anti-inflammatory effect of IL-10 in vitro. Induction of HO-1 by IL-10 was also evident in vivo. IL-10-mediated protection against LPS-induced septic shock in mice was significantly attenuated by cotreatment with the HO inhibitor, zinc protoporphyrin. The identification of HO-1 as a downstream effector of IL-10 provides new possibilities for improved therapeutic approaches for treating inflammatory diseases.  相似文献   

18.
19.
20.
Tumor cell survival and proliferation is attributable in part to suppression of apoptotic pathways, yet the mechanisms by which cancer cells resist apoptosis are not fully understood. Many cancer cells constitutively express heme oxygenase-1 (HO-1), which catabolizes heme to generate biliverdin, Fe(2+), and carbon monoxide (CO). These breakdown products may play a role in the ability of cancer cells to suppress apoptotic signals. K(+) channels also play a crucial role in apoptosis, permitting K(+) efflux which is required to initiate caspase activation. Here, we demonstrate that HO-1 is constitutively expressed in human medulloblastoma tissue, and can be induced in the medulloblastoma cell line DAOY either chemically or by hypoxia. Induction of HO-1 markedly increases the resistance of DAOY cells to oxidant-induced apoptosis. This effect was mimicked by exogenous application of the heme degradation product CO. Furthermore we demonstrate the presence of the pro-apoptotic K(+) channel, Kv2.1, in both human medulloblastoma tissue and DAOY cells. CO inhibited the voltage-gated K(+) currents in DAOY cells, and largely reversed the oxidant-induced increase in K(+) channel activity. p38 MAPK inhibition prevented the oxidant-induced increase of K(+) channel activity in DAOY cells, and enhanced their resistance to apoptosis. Our findings suggest that CO-mediated inhibition of K(+) channels represents an important mechanism by which HO-1 can increase the resistance to apoptosis of medulloblastoma cells, and support the idea that HO-1 inhibition may enhance the effectiveness of current chemo- and radiotherapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号