首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photosynthetic capacities of five species of brown algae in red light were found to be strongly limited by the inorganic carbon supply of natural sea water. Under these conditions, pH 8·2 and dissolved inorganic carbon concentration (DIG) of 2·1 mol m?3, a short pulse of blue light was found to increase the subsequent rate of photosynthesis in saturating red light. The degree of blue light stimulation varied between species, ranging from an increase of over 200% of the original rate in Colpomenia peregrins to only 10% in Dictyota dichotoma. Increasing the DIG concentration of sea water by bicarbonate addition resulted in carbon saturation of photosynthesis in all five species. Blue light stimulation was greatly reduced at these higher DIG concentrations. The response in Laminaria digitata was examined in more detail by manipulation of pH and DIG to produce solutions with different concentrations of dissolved CO2. At a CO2 concentration typical of normal sea water (12·4 mmol m?3), blue light treatment increased photosynthetic rate by approximately 50%. Blue light stimulation was increased to over 150% at CO2 concentrations below that of sea water, whereas at concentrations above that of sea water, the effect was diminished. Therefore, the effect of blue light on photosynthetic capacity appears to involve an increase in the rate of supply of carbon dioxide to the plant.  相似文献   

2.
Stimulation or light-saturated rates of photosynthesis in Ectocarpus siliculosus (Dillwyn) Lyngb. by blue light was eliminated by increasing dissolved inorganic carbon (DIC) or by lowering pH in natural seawater. The amplitude of the circadian rhythm of photosynthesis was also diminished under these conditions, and the pH compensation points in a closed system were higher in the presence of blue light and during the circadian day. These observations suggest that blue light and the circadian clock regulate the activity of a carbon acquisition system in these plants. The inhibitor of external carbonic anhydrase, acetazolamide, reduced overall rates of photosynthesis by only about 30%, but ethoxyzolamide suppressed the circadian rhythm of photosynthesis almost completely and markedly reduced the duration of responses to blue light pulses. Similar patterns were obtained when photosynthesis was measured in strongly limiting DIC concentrations (0–0.5 mol m?3). Since blue light stimulated photosynthesis under these conditions of strong carbon limitation, we suggest that blue light activates the release of CO2 from an internal CO2 store. We propose a metabolic pathway with similarities to that of CAM plants. Non-photosynthetic fixation leads to the accumulation of a storage metabolite. The circadian clock and blue light control the mobilization of CO2 at the site of decarboxylation of this metabolite. In the presence of continuous blue light the pathway is proposed to cycle and act as a pump for CO2 into the chloroplasts. This hypothesis helps to explain a number of previously reported peculiarities of brown algal photosynthesis.  相似文献   

3.
Induction of the carbon concentrating mechanism (CCM) has been investigated during the acclimation of 5% CO2‐grown Chlamydomonas reinhardtii 2137 mt + cells to well‐defined dissolved inorganic carbon (Ci) limited conditions. The CCM components investigated were active HCO3? transport, active CO2 transport and extracellular carbonic anhydrase (CAext) activity. The CAext activity increased 10‐fold within 6 h of acclimation to 0·035% CO2 and there was a further slight increase over the next 18 h. The CAext activity also increased substantially after an 8 h lag period during acclimation to air in darkness. Active CO2 and HCO3? uptake by C. reinhardtii cells were induced within 2 h of acclimation to air, but active CO2 transport was induced prior to active HCO3? transport. Similar results were obtained during acclimation to air in darkness. The critical Ci concentrations effecting the induction of active Ci transport and CAext activity were determined by allowing cells to acclimate to various inflow CO2 concentrations in the range 0·035–0·84% at constant pH. The total Ci concentration eliciting the induction and repression of active Ci transport was higher during acclimation at pH 7·5 than at pH 5·5, but the external CO2 concentration was the same at both pHs of acclimation. The concentration of external CO2 required for the full induction and repression of Ci transport and CAext activity were 10 and 100 μM , respectively. The induction of CAext and active Ci transport are not correlated temporally, but are regulated by the same critical CO2 concentration in the medium.  相似文献   

4.
Blue light induced stomatal opening has been studied by applying a short pulse (~5 to 60 s) of blue light to a background of saturating photosynthetic red photons, but little is known about steady-state stomatal responses. Here we report stomatal responses to blue light at high and low CO2 concentrations. Steady-state stomatal conductance (gs) of C3 plants increased asymptotically with increasing blue light to a maximum at 20% blue (120 μmol m−2 s−1). This response was consistent from 200 to 800 μmol mol−1 atmospheric CO2 (Ca). In contrast, blue light induced only a transient stomatal opening (~5 min) in C4 species above a Ca of 400 μmol mol−1. Steady-state gs of C4 plants generally decreased with increasing blue intensity. The net photosynthetic rate of all species decreased above 20% blue because blue photons have lower quantum yield (moles carbon fixed per mole photons absorbed) than red photons. Our findings indicate that photosynthesis, rather than a blue light signal, plays a dominant role in stomatal regulation in C4 species. Additionally, we found that blue light affected only stomata on the illuminated side of the leaf. Contrary to widely held belief, the blue light-induced stomatal opening minimally enhanced photosynthesis and consistently decreased water use efficiency.  相似文献   

5.
The effect of blue and red light on the adaptation to low CO2 conditions was studied in high-CO2 grown cultures of Chlorella Pyrenoidosa (82T) and Chlamydomonas reinhardtii(137+) by measuring O2 exchange under various inorganic carbon (Ci) concentrations. At equal photosynthetic photon flux density (PPFD), blue light was more favourable for adaptation in both species, compared to red light. The difference in photosynthetic oxygen evolution between cells adapted to low Ciunder blue and red light was more pronounced when oxygen evolution was measured under low Ci compared to high Ci conditions. The effect of light quality on adaptation remained for several hours. The different effects caused by blue and red light was observed in C. pyrenoidosa over a wide range of PPFD with increasing differences at increasing PPFD. The maximal difference was obtained at a PPFD above 1 500 μmol m?2s?1. We found no difference in the extracellular carbonic anhydrase activity between blue- and red light adapted cells. The light quality effect recorded under Ci-limiting conditions in C. reinhardtii cells adapted to air, was only 37% less when instead of pure blue light red light containing 12.5% of blue light (similar PPFD as blue light) was used during adaptation to low carbon. This indicates that in addition to affecting photosynthesis, blue light affected a sensory system involved in algal adaptation to low Ci conditions. Since the affinity for Ci of C. Pyrenoidosa and C. reinhardtii cells adapted to air under blue light was higher than that of cells adapted under red light, we suggest that induction of some component(s) of the Ci accumulating mechanism is regulated by the light quality.  相似文献   

6.
Physiological properties of photosynthesis were determined in the marine diatom, Phaeodactylum tricornutum UTEX640, during acclimation from 5% CO2 to air and related to H2CO3 dissociation kinetics and equilibria in artificial seawater. The concentration of dissolved inorganic carbon at half maximum rate of photosynthesis (K0·5[DIC]) value in high CO2‐grown cells was 1009 mmol m ? 3 but was reduced three‐fold by the addition of bovine carbonic anhydrase (CA), whereas in air‐grown cells K0·5[DIC] was 71 mmol m ? 3, irrespective of the presence of CA. The maximum rate of photosynthesis (Pmax) values varied between 300 and 500 μ mol O2 mg Chl ? 1 h ? 1 regardless of growth pCO2. Bicarbonate dehydration kinetics in artificial seawater were re‐examined to evaluate the direct HCO3 ? uptake as a substrate for photosynthesis. The uncatalysed CO2 formation rate in artificial seawater of 31·65°/oo of salinity at pH 8·2 and 25 °C was found to be 0·6 mmol m ? 3 min ? 1 at 100 mmol m ? 3 DIC, which is 53·5 and 7·3 times slower than the rates of photosynthesis exhibited in air‐ and high CO2‐grown cells, respectively. These data indicate that even high CO2‐grown cells of P. tricornutum can take up both CO2 and HCO3 ? as substrates for photosynthesis and HCO3 ? use improves dramatically when the cells are grown in air. Detailed time courses were obtained of changes in affinity for DIC during the acclimation of high CO2‐grown cells to air. The development of high‐affinity photosynthesis started after a 2–5 h lag period, followed by a steady increase over the next 15 h. This acclimation time course is the slowest to be described so far. High CO2‐grown cells were transferred to controlled DIC conditions, at which the concentrations of each DIC species could be defined, and were allowed to acclimate for more than 36 h. The K0·5[DIC] values in acclimated cells appeared to be correlated only with [CO2(aq)] in the medium but not to HCO3 ? , CO32 ? , total [DIC] or the pH of the medium and indicate that the critical signal regulating the affinity of cells for DIC in the marine diatom, P. tricornutum, is [CO2(aq)] in the medium.  相似文献   

7.
In saturating irradiances of red light, photosynthesis of Laminaria saccharina (L.) Lamouroux was stimulated by low irradiances of continuous blue light only when the supply of dissolved inorganic carbon (DIC) was limiting. The degree of this stimulation was inversely proportional to the logarithm of the concentration of free CO2, whether this was adjusted by varying the total DIC or the pH at a given DIC concentration. The final pH reached in a closed system was higher in blue light than in red light. Both acetazolamide and ethoxyzolamide suppressed the responses to blue light almost completely, but reduced photosynthesis in red light by only 30%. Buffering the pH of the seawater also suppressed the stimulation of photosynthesis by blue light without affecting the photosynthetic rate in red light. The transient stimulation of O2 evolution by a blue light pulse was not accompanied by a corresponding increase in CO2 consumption. These observations could be explained if, in analogy to the mechanism proposed for Ectocarpus (Schmid, Mills & Dring 1996, Plant Cell and Environment 19,373–382, this issue, accompanying paper), photosynthesis was supported by a blue-light-activated release of CO2 from an internal store. We suggest that the store is located in the vacuoles of the cortical tissue of the blades. The main photosynthetic tissue, however, is in the overlying meristoderm, and blue-light-activated mobilization of the store could stimulate O2 evolution only if periplasmic carbonic anhydrase was available to facilitate CO2 uptake from the cortex.  相似文献   

8.
Microbial photosynthesis presents a valuable opportunity to capture abundant light energy to produce renewable bioenergy and biomaterials. To understand the factors that control the productivity of photosynthetic microorganisms, we conducted a series of semi‐continuous experiments using bench‐scale photobioreactor (PBR) systems, the cyanobacterium Synechocystis PCC6803 (PCC6803), and light conditions imitating actual day–night light irradiance (LI). Our results demonstrate that using normal BG‐11 medium resulted in severe phosphate (Pi) limitation for continuous operation. Mitigation of Pi‐limitation, by augmenting the Pi content of BG‐11, allowed higher biomass productivity; however, once Pi‐limitation was alleviated, limitation by inorganic carbon (Ci) or LI occurred. Ci‐limitation was detected by a low total Ci concentration (<5 mg C/L) and high and fluctuating pH. Ci‐limitation was relieved by delivering more CO2, which led to a stable pH in the range of 7–9 and at least 5 mg/L of Ci in HCO. LI limitation, evidenced by an average LI <14 W/m2 for PCC6803, was induced by a high biomass concentration of 1,300 mg/L. Thus, this work provides quantitative tools of stoichiometry and kinetics to evaluate limitation on PBRs. Biotechnol. Bioeng. 2010;106: 553–563. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Accumulation of an intracellular pool of carbon (Ci pool) is one strategy by which marine algae overcome the low abundance of dissolved CO2 (CO2(aq)) in modern seawater. To identify the environmental conditions under which algae accumulate an acid‐labile Ci pool, we applied a 14C pulse‐chase method, used originally in dinoflagellates, to two new classes of algae, coccolithophorids and diatoms. This method measures the carbon accumulation inside the cells without altering the medium carbon chemistry or culture cell density. We found that the diatom Thalassiosira weissflogii [(Grunow) G. Fryxell & Hasle] and a calcifying strain of the coccolithophorid Emiliania huxleyi [(Lohmann) W. W. Hay & H. P. Mohler] develop significant acid‐labile Ci pools. Ci pools are measureable in cells cultured in media with 2–30 µmol l?1 CO2(aq), corresponding to a medium pH of 8.6–7.9. The absolute Ci pool was greater for the larger celled diatoms. For both algal classes, the Ci pool became a negligible contributor to photosynthesis once CO2(aq) exceeded 30 µmol l?1. Combining the 14C pulse‐chase method and 14C disequilibrium method enabled us to assess whether E. huxleyi and T. weissflogii exhibited thresholds for foregoing accumulation of DIC or reduced the reliance on bicarbonate uptake with increasing CO2(aq). We showed that the Ci pool decreases with higher CO2:HCO3? uptake rates.  相似文献   

10.
Teruo Ogawa 《BBA》1982,681(1):103-109
Illumination of leaves of Vicia faba L. provoked oscillations in the rates of CO2 uptake and O2 evolution. The oscillations were marked under anaerobic conditions, but were absent at 20% O2. The minimum CO2 concentration required for the appearance of oscillations was 600 μl · l?1. The higher the CO2 concentration, the stronger the oscillations. The effect of CO2 concentration was saturated at 1000 μl CO2 · l?1. The period of the oscillations was 5–6 min at a light intensity of 80 nE · cm?2 · s?1 and became longer on lowering of the intensity. No oscillations appeared at intensities below 12 nE · cm?2 · s?1. Oscillations could also be generated by increasing the CO2 concentration in the atmosphere during strong illumination under anaerobic conditions. The chlorophyl a fluorescence yield showed oscillations, similar in shape and frequency to those of photosynthesis, after such an environmental change. Oscillations were also observed in photosynthesis of other C3 plants, Lycopersicon esulentum Mill and Glycine max Merrill, under the same conditions as those required for V. faba, but were absent for the C4 plants, Zea mays and Amaranthus retroflexus L.  相似文献   

11.
The mechanism of inorganic carbon (Ci) acquisition by the economic brown macroalga, Hizikia fusiforme (Harv.) Okamura (Sargassaceae), was investigated to characterize its photosynthetic physiology. Both intracellular and extracellular carbonic anhydrase (CA) were detected, with the external CA activity accounting for about 5% of the total. Hizikia fusiforme showed higher rates of photosynthetic oxygen evolution at alkaline pH than those theoretically derived from the rates of uncatalyzed CO2 production from bicarbonate and exhibited a high pH compensation point (pH 9.66). The external CA inhibitor, acetazolamide, significantly depressed the photosynthetic oxygen evolution, whereas the anion‐exchanger inhibitor 4,4′‐diisothiocyano‐stilbene‐2,2′‐disulfonate had no inhibitory effect on it, implying the alga was capable of using HCO3? as a source of Ci for its photosynthesis via the mediation of the external CA. CO2 concentrations in the culture media affected its photosynthetic properties. A high level of CO2 (10,000 ppmv) resulted in a decrease in the external CA activity; however, a low CO2 level (20 ppmv) led to no changes in the external CA activity but raised the intracellular CA activity. Parallel to the reduction in the external CA activity at the high CO2 was a reduction in the photosynthetic CO2 affinity. Decreased activity of the external CA in the high CO2 grown samples led to reduced sensitiveness of photosynthesis to the addition of acetazolamide at alkaline pH. It was clearly indicated that H. fusiforme, which showed CO2‐limited photosynthesis with the half‐saturating concentration of Ci exceeding that of seawater, did not operate active HCO3? uptake but used it via the extracellular CA for its photosynthetic carbon fixation.  相似文献   

12.
The unicellular green alga Chlamydomonas reinhardtii possesses a CO2-concentrating mechanism. In order to measure the CO2 permeability coefficients of the plasma membranes (PMs), carbonic anhydrase (CA) loaded vesicles were isolated from C. reinhardtii grown either in air enriched with 50 mL CO2 · L?1} (high-Ci cells) or in ambient air (350 μL CO2 · L?1}; low-Ci cells). Marker-enzyme measurements indicated less than 1% contamination with thylakoid and mitochondrial membranes, and that more than 90% of the PMs from high and low-Ci cells were orientated right-side-out. The PMs appeared to be sealed as judged from the ability of vesicles to accumulate [14C]acetate along a proton gradient for at least 10 min. Carbonic anhydrase-loaded PMs from high and low-Ci cells of C. reinhardtii were used to measure the exchange of 18O between doubly labelled CO2 (13C18O2) and H2O in stirred suspensions by mass spectrometry. Analysis of the kinetics of the 18O depletion from 13C18O2 in the external medium provides a powerful tool to study CO2 diffusion across the PM to the active site of CA which catalyses 18O exchange only inside the vesicles but not in the external medium (Silverman et al., 1976, J Biol Chem 251: 4428–4435). The activity of CA within loaded PM vesicles was sufficient to speed-up the 18O loss to H2O to 45360–128800 times the uncatalysed rate, depending on the efficiency of CA-loading and PM isolation. From the 18O-depletion kinetics performed at pH 7.3 and 7.8, CO2 permeability coefficients of 0.76 and 1.49·10?3} cm·s?1}, respectively, were calculated for high Ci cells. The corresponding values for low-Ci cells were 1.21 and 1.8·10?3} cm·s?1}. The implications of the similar and rather high CO2 permeability coefficients (low CO2 resistance) in high and low-Ci cells for the COi-concentrating mechanism of C. reinhardtii are discussed.  相似文献   

13.
The inorganic carbon (Ci) accumulation and the intracellular location of carbonic anhydrase (CA, EC 4.2.1.1) in the halotolerant unicellular alga Dunaliella salina have been investigated. The rate of HCO3 -dependent O2 evolution was determined by growth conditions. Algae grown under high CO2 conditions (5% CO2 in air, v/v; high Ci cells) had a very low affinity for HCO3? at pH 7.0 and 8.2, whereas algae grown under low CO2 conditions (0.03% CO2 in air; low Ci cells) showed a high affinity for HCO3? at both pH values and were sensitive to Dextran-bound sulfonamide (DBS), an inhibitor of extracellular CA. The photosynthetic rate or HCO4? dependent O2 evolution was always higher at pH 7.0 than at pH 8.2. Ethoxyzolamide (EZ), an inhibitor of total (extacellular plus intracellular) CA activity, strongly inhibited photosynthesis at both pH values. During adaptation from high to low CO2 conditions CA activity increased in chloroplasts in a process dependent on the novo protein synthesis. Carbonic anhydrase activity was found in the supernatant and pellet fractions of chloroplast homogenates. The rate of photosynthesis of chloroplasts from low Ci cells was higher at pH 7.0 than at pH 8.2. The alkalinization of the growth medium, which took place only in the presence of Ci, was partially inhibited by DBS and completely by EZ. We suggest that in D. salina CO2 is the general form of Ci transported across the plasma membrane and the chloroplast envelope and that bicarbonate enters the cell mainly, although not entirely, by an ‘indirect’ mechanism after dehydration to CO2.  相似文献   

14.
Thirty-five species of marine macroalgae were tested for their ability to remove inorganic carbon from seawater using the pH-drift technique. Six of these species, all Rhodophyta, were unable to use HCO3. The remaining species exhibited a range in ability to use HCO3 and deplete inorganic carbon (Cτ); the three most effective species, all Chlorophyta, raised the pH to over 10.50, depleted the concentration of CO2 effectively to zero, and depleted the concentration of Cτ to less than 50% of that at air-equilibrium. In contrast, the six species restricted to CO2 did not raise the pH above 9.0 at a CO2 concentration of about 1.5 μmol · L-1 and depleted the concentration of Cτ to about 80% of that at air-equilibrium. Ability to raise pH and deplete Cτ was linked to the habitat in which the species grew. Five of the six species which lack the ability to use HCO3 grow subtidally in relatively low light beneath a canopy of larger Phaeophyta. None of these species grow in rockpools where carbon-depletion may occur. Species from rockpools were all effective at removing inorganic carbon. Competition for Cτ may be one of the factors that determines species composition in rockpools. There was a species-specific difference between the calculated concentration of Cτ at the end of a pH-drift experiment and that measured directly. Most, but not all, species with the ability to generate high pH-values showed a lower than calculated final concentration of Cτ consistent with precipitation of CaCO3. A number of Rhodophyta with no, or a limited, ability to use HCO3 showed the opposite response, with final concentrations of Cτ exceeding that calculated from the pH. Calculations based on the maximum gross rate of production of CO2 from HCO3 in the absence of external carbonic anhydrase confirmed the results of the pH-drift experiments by demonstrating HCO3 -use in Monostroma fuscum (Post et Rupr.) Wittr. And Ulva lactuca L. and the lack of this ability in Lomentaria articulate (Huds.) Lyngb. Rates of net photosynthesis at air-equilibrium were greater than 95% of those at 2.3 mmol Cτ· L-1 for many of the species which were able to use HCO3, but on average only 72% for the six species restricted to CO2.  相似文献   

15.
Hydrilla verticillata (L.f.) Royle exhibits an inducible C4-type photosynthetic cycle, but lacks Kranz anatomy. Leaves in the C4-type state (but not C3-type) contained up to 5-fold higher internal dissolved inorganic carbon (DIC) concentrations than the medium, indicating that they possessed a CO2-concentrating mechanism (CCM). Several lines of evidence indicated that the chloroplast was the likely site of CO2 generation. From C4-type leaf [DIC] measurements, the estimated chloroplastic free [CO2] was 400 mmol m?3. This gave a calculated 2% O2 inhibition of photosynthesis, which was identical to the measured value, and provided independent evidence that the estimated [CO2] was close to the true value. A homogeneous distribution of DIC in the C4-type leaf could not account for such a high [CO2], or the resultant low O2 inhibition. For C3-type leaves the estimated chloroplastic [CO2] was only 7 mmol m?3, which gave high, and similar, calculated and measured O2 inhibition values of 22 and 26%, respectively. The CCM did not appear to be located at the plasma membrane, as it operated at low and high pH, indicating that it was independent of use of HCO3? from the medium. Also, both C3? and C4-type Hydrilla leaves showed pH polarity in the light, with abaxial and adaxial boundary layer values of about pH 4·0 and 10·5, respectively. Thus, pH polarity was not a direct component of the CCM, though it probably improved access to HCO3. Additionally, iodoacetamide and methyl viologen greatly reduced abaxial acidification, but not the steady-state CCM. Inhibitor studies suggested that the CCM required photosynthetically generated ATP, but Calvin cycle activity was not essential. Both leaf types accumulated DIC in the dark by an ATP-requiring process, possibly respiration, and C4-type leaves fixed CO2 at 11·8% of the light rate. The operation of a CCM to minimize photorespiration, and the ability to recapture respiratory CO2 at night, would conserve DIC in a densely vegetated lake environment where daytime [CO2] is severely limiting, while [O2] and temperatures are high.  相似文献   

16.
The effects of oxygen concentration and light intensity on the rates of apparent photosynthesis, true photosynthesis, photorespiration and dark respiration of detached spruce twigs were determined by means of an infra-red carbon dioxide analyzer (IRCA). A closed circuit system IRCA was filled with either 1 per cent of oxygen in nitrogen, air (21 % O2) or pure oxygen (100 % O2). Two light intensities 30 × 103 erg · cm ?2· s?1 and 120 × 103 erg · cm?2· s?1 were applied. It has been found that the inhibitory effect of high concentration of oxygen on the apparent photosynthesis was mainly a result of a stimulation of the rate of CO2 production in light (photorespiration). In the atmosphere of 100 % O2, photorespiration accounts for 66–80 per cent of total CO2 uptake (true photosynthesis). Owing to a strong acceleration of photorespiration by high oxygen concentrations, the rate of true photosynthesis calculated as the sum of apparent photosynthesis and photorespiration was by several times less inhibited by oxygen than the rate of apparent photosynthesis. The rates of dark respiration were essentially unaffected by the oxygen concentrations used in the experiments. An increase in the intensity of light from 30 × 103 erg · cm?3· s?1 to 120 · 103 erg · cm?2· s?1 enhanced the rate of photorespiration in the atmospheres of 21 and 100 % oxygen but not in 1 % O2. The rate of apparent photosynthesis, however, was little affected by light intensity in an atmosphere of 1 % oxygen.  相似文献   

17.
The present work investigated the inorganic carbon (Ci) uptake, fluorescence quenching and photo‐inhibition of the edible cyanobacterium Ge‐Xian‐Mi (Nostoc) to obtain an insight into the role of CO2 concentrating mechanism (CCM) operation in alleviating photo‐inhibition. Ge‐Xian‐Mi used HCO3 in addition to CO2 for its photosynthesis and oxygen evolution was greater than the theoretical rates of CO2 production derived from uncatalysed dehydration of HCO3. Multiple transporters for CO2 and HCO3 operated in air‐grown Ge‐Xian‐Mi. Na+‐dependent HCO3 transport was the primary mode of active Ci uptake and contributed 53–62% of net photosynthetic activity at 250 µmol L?1 KHCO3 and pH 8.0. However, the CO2‐uptake systems and Na+‐independent HCO3 transport played minor roles in Ge‐Xian‐Mi and supported, respectively, 39 and 8% of net photosynthetic activity. The steady‐state fluorescence decreased and the photochemical quenching increased in response to the transport‐mediated accumulation of intracellular Ci. Inorganic carbon transport was a major factor in facilitating quenching during the initial stage and the initial rate of fluorescence quenching in the presence of iodoacetamide, an inhibitor of CO2 fixation, was 88% of control. Both the initial rate and extent of fluorescence quenching increased with increasing external dissolved inorganic carbon (DIC) and saturated at higher than 200 µmol L?1 HCO3. The operation of the CCM in Ge‐Xian‐Mi served as a means of diminishing photodynamic damage by dissipating excess light energy and higher external DIC in the range of 100–10000 µmol L?1 KHCO3 was associated with more severe photo‐inhibition under strong irradiance.  相似文献   

18.
As previously described, the absolute rate of photosynthesis due to a limited concentration of dissolved inorganic carbon at alkaline pH, where the rate of CO2 formation is strictly limited, plotted as a function of chlorophyll (Chl) concentration, will take the form of a rectangular hyperbola combined with a linear rate directly proportional to [Chl], which are, respectively, due to the contribution of CO2 and HCO3 to photosynthesis. This model represents that the mathematical asymptote of absolute rate of photosynthesis versus cell density is described by the whole-cell rate constant for HCO3 uptake and the maximum rate of CO2 formation in the extracellular space. This means that any trace modification of the CO2 formation rate outside the cell will alter the photosynthetic rate and should be detectable experimentally. In air-grown Chlorella ellipsoidea and C. kessleri and in high CO2-grown C. saccharophila, the graph of the absolute rate of photosynthesis against [Chl] clearly followed the mathematical model described above and the actual CO2 formation rates outside the cells were not significantly different from the calculated rates. It also indicated that the whole-cell rate constants for CO2 and HCO3 uptake in air-grown C. ellipsoidea and C. saccharophila were similar at ≈ 300 and 2·0 mm3μg–1 Chl min–1, respectively, whereas those in air-grown C. kessleri were ≈ 550 and 15 mm3μg–1 Chl min–1. These results indicate that no acidification of the periplasmic space occurs, and there is no trace activity of external carbonic anhydrase in these microalgae.  相似文献   

19.
A computerized oxygen electrode Astern was used to make rapid and accurate measurements of photosynthetic light and dissolved inorganic carbon (DIC) response cures with a macroalga. Ulva rotundata Blid. was grown in an outdoor, continuous flow system in seawater under sunlight or 9% of sunlight at Beaufort, North Carolina. The light compensation points in the shade- and sun-grown plants, measured in seawater, were at photon flux densities (PFDs) of 16 and 27 μmol. Photons·m?2·s?1, respectively but the quantum yield of O2 evolution was not significantly different. Rates of photosynthesis in seawater per unit area of thallus under saturating light and rates of dark respiration were about 1.5-fold higher in sun- than in shade-grown plants. The concentration of DIC in seawater (approximately 2 mM) limited photosynthesis at absorbed PFDs above 60–70 μmol photons·m?2·s?1 Addition of 20 mM inorganic carbon had no effect on quantum yield but caused about a 1.5-fold increase in the light-saturated photosynthetic rate in both shade- and sun-grown Ulva. The effect of DIC supplementation was greatest in plants grown in October and least in plants grown in June. The light- and DIC-saturated rate of photosynthesis in seawater was similar to the maximum rate obtained by exposing Ulva to 10% CO2, in the gas phase. The carbon isotope values (δ13C, reflecting the 13C/12C ratio compared to a standard) of Ulva grown in the same seawater supply were dependent on light and agitation. Samples from Beaufort Inlet were more negative (δ13C value, ?20.03‰) than those grown in bright light with agitation (δ13C value, ?17.78‰ outdoors; ?17.23‰ indoors), which may indicate DIC supply limited carbon uptake in seawater.  相似文献   

20.
Growth of Eucheuma denticulatum was studied in the field and in laboratory experiments. Field co-cultivation of E. denticulatum with the green alga Ulva reticulata or the seagrass Thalassia sp. reduced daily growth rate (DGR) of a Tanzanian and a Philippine strain of E. denticulatum by 10–100% and 10–55%, respectively, depending upon the type of water current: a unidirectional water current produced the best growth. Laboratory co-cultivation of a Tanzanian strain of E. denticulatum with U. reticulata also reduced DGR (to 8% of the control) and nitrate-nitrogen uptake rate (to <30% of the control) of E. denticulatum and, moreover, it increased epiphytism of a red filamentous alga on E. denticulatum. E. denticulatum monoculture at pH 8·6 ± 0·5 or at photosynthetic photon flux densities (PPFDs) higher than its growth optimum (350 ± 50 μmol photons m-2 s-1) also increased epiphytism. The lack of a competitive mechanism for inorganic carbon uptake in Eucheuma may have contributed to its reduced growth during co-cultivation. During co-cultivation, elevated pH regimes (pH > 8·5) were created around the Eucheuma thalli as a result of photosynthesis, thus decreasing the concentration of CO2 in the seawater to values around 1 μmM. As Eucheuma depends mainly on the CO2 in the seawater for its growth, a higher pH can cause CO2 limitation by decreasing CO2 concentration. Hydrogen peroxide (H2O2) production from the Tanzanian strain was also determined by luminol-dependent chemiluminescence. H2O2 production was found to increase with increased pH and PPFD (probably as a result of oxidative stress). Preincubation of plants with catalase for 5 min before addition of luminol prevented chemiluminescence, confirming H2O2 as the substrate of the luminol reaction. We suggest that the inefficiency of E. denticulatum in HCO- 3 utilisation contributes to its poor growth during field coexistence with seagrasses or Ulva sp. and that carbon deficiency induces H2O2 production in E. denticulatum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号